BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-28-2017, 03:06 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Unravelling and quantifying the "NMR-invisible" metabolites interacting with human serum albumin by binding competition and T2 relaxation-based decomposition analysis.

Unravelling and quantifying the "NMR-invisible" metabolites interacting with human serum albumin by binding competition and T2 relaxation-based decomposition analysis.

Related Articles Unravelling and quantifying the "NMR-invisible" metabolites interacting with human serum albumin by binding competition and T2 relaxation-based decomposition analysis.

J Proteome Res. 2017 Mar 27;:

Authors: Barrilero R, Ramirez N, Vallvé JC, Taverner D, Fuertes R, Amigó N, Correig X

Abstract
Quantitative profiling of low-molecular-weight metabolites (LMWM) by 1H-NMR is routinely used in high-throughput serum metabolomics. First, the protein background is attenuated using a T2 filter, then the LMWM signals are resolved by line-shape fitting. However, protein binding modifies the motional properties of LMWM and their signal partially attenuates with the T2 filter, along with the protein background. Consequently, the quantified LMWM signal does not reflect the total concentration in serum but the non-binding part. Here, we present a novel strategy based on binding competition to promote the release of the "NMR-invisible" metabolites from serum proteins and achieve quantifications closer to total concentrations. The study focuses in five clinically relevant amino acids with different binding properties (valine, isoleucine, leucine, tyrosine and phenylalanine). We analyzed their binding affinity to human serum albumin (HSA) in serum mimic samples and promoted the release of their bound fraction by TSP titration. Furthermore, we used a novel combination of pseudo-2D CPMG and multivariate curve resolution analysis, allowing the separation of LMWM and protein signals and providing LMWM quantifications corrected for transverse relaxation effects. We found that TSP concentrations larger than 3 mM released most of the bound fraction and validated these findings in real serum/plasma samples.


PMID: 28345344 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Comparative analysis the binding affinity of mycophenolic sodium and meprednisone with human serum albumin: insight by NMR relaxation data and docking simulation.
Comparative analysis the binding affinity of mycophenolic sodium and meprednisone with human serum albumin: insight by NMR relaxation data and docking simulation. Related Articles Comparative analysis the binding affinity of mycophenolic sodium and meprednisone with human serum albumin: insight by NMR relaxation data and docking simulation. Chem Biol Interact. 2016 Feb 15; Authors: Ma X, He J, Yan J, Wang Q, Li H Abstract Mycophenolic sodium is an immunosuppressive agent that is always combined administration with corticosteroid...
nmrlearner Journal club 0 02-20-2016 11:05 PM
[NMR paper] Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation.
From Mendeley Biomolecular NMR group: Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation. Journal of the American Chemical Society (2012). Pramodh Vallurupalli, Guillaume Bouvignies, Lewis E Kay et al. Ever since its initial development, solution NMR spectroscopy has been used as a tool to study conformational exchange. Although many systems are amenable to relaxation dispersion approaches, cases involving highly skewed populations in slow chemical exchange have, in general, remained recalcitrant to study. Here an experiment to detect and...
nmrlearner Journal club 0 10-17-2013 12:49 PM
[NMR paper] NMR identification of endogenous metabolites interacting with fatted and non-fatted human serum albumin in blood plasma: Fatty acids influence the HSA-metabolite interaction.
NMR identification of endogenous metabolites interacting with fatted and non-fatted human serum albumin in blood plasma: Fatty acids influence the HSA-metabolite interaction. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR identification of endogenous metabolites interacting with fatted and non-fatted human serum albumin in blood plasma: Fatty acids influence the HSA-metabolite interaction. J Magn Reson. 2013 Jan 8;228C:81-94 Authors: Jupin M, Michiels PJ, Girard FC, Spraul M,...
nmrlearner Journal club 0 02-03-2013 10:19 AM
NMR Identification of Endogenous Metabolites interacting with Fatted and Non-Fatted Human Serum Albumin in Blood Plasma: Fatty Acids influence the HSA-Metabolite Interaction
NMR Identification of Endogenous Metabolites interacting with Fatted and Non-Fatted Human Serum Albumin in Blood Plasma: Fatty Acids influence the HSA-Metabolite Interaction Available online 8 January 2013 Publication year: 2013 Source:Journal of Magnetic Resonance</br> </br> Metabolites and their concentrations are direct reporters on body biochemistry. Thanks to technical developments metabolic profiling of body fluids, such as blood plasma, by for instance NMR has in the past decade become increasingly accurate enabling successful clinical diagnostics. Human Serum...
nmrlearner Journal club 0 01-09-2013 10:01 AM
[NMR paper] Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation.
From Mendeley Biomolecular NMR group: Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation. Journal of the American Chemical Society (2012). Pramodh Vallurupalli, Guillaume Bouvignies, Lewis E Kay et al. Ever since its initial development, solution NMR spectroscopy has been used as a tool to study conformational exchange. Although many systems are amenable to relaxation dispersion approaches, cases involving highly skewed populations in slow chemical exchange have, in general, remained recalcitrant to study. Here an experiment to detect and...
nmrlearner Journal club 0 11-12-2012 01:53 AM
[NMR paper] Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation.
From Mendeley Biomolecular NMR group: Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation. Journal of the American Chemical Society (2012). Pramodh Vallurupalli, Guillaume Bouvignies, Lewis E Kay et al. Ever since its initial development, solution NMR spectroscopy has been used as a tool to study conformational exchange. Although many systems are amenable to relaxation dispersion approaches, cases involving highly skewed populations in slow chemical exchange have, in general, remained recalcitrant to study. Here an experiment to detect and...
nmrlearner Journal club 0 08-24-2012 08:01 PM
[NMR paper] Analysis of competitive binding of ligands to human serum albumin using NMR relaxatio
Analysis of competitive binding of ligands to human serum albumin using NMR relaxation measurements. Related Articles Analysis of competitive binding of ligands to human serum albumin using NMR relaxation measurements. J Pharm Biomed Anal. 2004 Feb 4;34(2):247-54 Authors: Cui YF, Bai GY, Li CG, Ye CH, Liu ML The competitive binding of two ligands, ibuprofen (IBP) and salicylic acid (SAL), to human serum albumin (HSA) was studied by using nuclear magnetic resonance (NMR) relaxation measurements. When the concentration of one ligand was...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC
Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments. Related Articles Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments. J Am Chem Soc. 2002 Oct 16;124(41):12352-60 Authors: Skrynnikov NR, Dahlquist FW, Kay LE Carr-Purcell-Meiboom-Gill (CPMG) relaxation measurements employing trains of 180 degrees pulses with variable pulse spacing provide valuable information about systems undergoing millisecond-time-scale chemical exchange. Fits of the CPMG relaxation...
nmrlearner Journal club 0 11-24-2010 08:58 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:03 AM.


Map