BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-11-2013, 12:07 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Unraveling long range residual dipolar coupling networks in strongly aligned proteins

Unraveling long range residual dipolar coupling networks in strongly aligned proteins

Publication date: Available online 10 July 2013
Source:Journal of Magnetic Resonance

Author(s): Luke Arbogast , Ananya Majumdar , Joel R. Tolman

Long-range residual dipolar couplings (lrRDCs) have the potential to serve as powerful structural restraints in protein NMR spectroscopy as they can provide both distance and orientation information about nuclei separate in sequence but close in space. Current nonselective methods for their measurement are limited to moderate alignment strengths due to the sheer abundance of active couplings at stronger alignment. This limits the overall magnitude and therefore distance across which couplings can be measured. We have developed a double resonance technique for the inversion of individual coupled spin pairs, called Selective Inversion by Single Transition Cross Polarization (SIST-CP). This technique enables the selective recoupling of lrRDCs, thus allowing the complex multiplets occurring in strongly aligned systems to be disentangled. This technique is demonstrated in the context of an application to the measurement of 13C’-1HN lrRDCs in strongly aligned proteins.
Graphical abstract

Highlights








More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[Question from NMRWiki Q&A forum] Long-range 1H-{15N} coupling (HMBC)
Long-range 1H-{15N} coupling (HMBC) Hello All I have two examples of what appears to be 6J coupling between 1H and 15N using gradient HMBC experiments with 15N at natural abundance. For such an experiment, 2J and 3J correlations are typical, sometimes 4J (W-type) but I've never seen 6J before. Has anyone else ever seen correlations over this distance? Any other comments? Craig.
nmrlearner News from other NMR forums 0 10-29-2012 07:03 PM
[U. of Ottawa NMR Facility Blog] Measurement of Long Range C H Coupling Constants
Measurement of Long Range C H Coupling Constants The stereochemistry of compounds is assigned very often with proton - proton NOE's by applying the 2D NOESY technique or the 1D selective gradient NOESY technique. These methods fail, however when the distance between protons is too large to measure an NOE. When faced with this situation, it may be possible to measure long range proton - carbon coupling constants which are able to provide the necessary information. Three-bond carbon - proton couplings follow a Karplus relationship where the magnitude of the coupling constant is related to...
nmrlearner News from NMR blogs 0 08-17-2012 10:44 PM
Backbone assignment of perdeuterated proteins using long-range H/C-dipolar transfers
Backbone assignment of perdeuterated proteins using long-range H/C-dipolar transfers Abstract For micro-crystalline proteins, solid-state nuclear magnetic resonance spectroscopy of perdeuterated samples can provide spectra of unprecedented quality. Apart from allowing to detect sparsely introduced protons and thereby increasing the effective resolution for a series of sophisticated techniques, deuteration can provide extraordinary coherence lifetimesâ??obtainable for all involved nuclei virtually without decoupling and enabling the use of scalar magnetization transfers. Unfortunately,...
nmrlearner Journal club 0 12-17-2011 04:44 AM
The Use of Residual Dipolar Coupling in Studying Proteins by NMR.
The Use of Residual Dipolar Coupling in Studying Proteins by NMR. The Use of Residual Dipolar Coupling in Studying Proteins by NMR. Top Curr Chem. 2011 Sep 28; Authors: Chen K, Tjandra N Abstract The development of residual dipolar coupling (RDC) in protein NMR spectroscopy, over a decade ago, has become a useful and almost routine tool for accurate protein solution structure determination. RDCs provide orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. Its measurement requires a...
nmrlearner Journal club 0 09-30-2011 06:00 AM
The Use of Residual Dipolar Coupling in Studying Proteins by NMR.
The Use of Residual Dipolar Coupling in Studying Proteins by NMR. The Use of Residual Dipolar Coupling in Studying Proteins by NMR. Top Curr Chem. 2011 Sep 28; Authors: Chen K, Tjandra N Abstract The development of residual dipolar coupling (RDC) in protein NMR spectroscopy, over a decade ago, has become a useful and almost routine tool for accurate protein solution structure determination. RDCs provide orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. Its measurement requires a...
nmrlearner Journal club 0 09-30-2011 05:59 AM
Paramagnetic-Based NMR Restraints Lift Residual Dipolar Coupling Degeneracy in Multidomain Detergent-Solubilized Membrane Proteins.
Paramagnetic-Based NMR Restraints Lift Residual Dipolar Coupling Degeneracy in Multidomain Detergent-Solubilized Membrane Proteins. Paramagnetic-Based NMR Restraints Lift Residual Dipolar Coupling Degeneracy in Multidomain Detergent-Solubilized Membrane Proteins. J Am Chem Soc. 2011 Feb 2; Authors: Shi L, Traaseth NJ, Verardi R, Gustavsson M, Gao J, Veglia G Residual dipolar couplings (RDCs) are widely used as orientation-dependent NMR restraints to improve the resolution of the NMR conformational ensemble of biomacromolecules and define the...
nmrlearner Journal club 0 02-04-2011 11:34 AM
Paramagnetic-Based NMR Restraints Lift Residual Dipolar Coupling Degeneracy in Multidomain Detergent-Solubilized Membrane Proteins
Paramagnetic-Based NMR Restraints Lift Residual Dipolar Coupling Degeneracy in Multidomain Detergent-Solubilized Membrane Proteins Lei Shi, Nathaniel J. Traaseth, Raffaello Verardi, Martin Gustavsson, Jiali Gao and Gianluigi Veglia http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja109080t/aop/images/medium/ja-2010-09080t_0003.gif Journal of the American Chemical Society DOI: 10.1021/ja109080t http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/Tu9H79dfKCk
nmrlearner Journal club 0 02-03-2011 06:45 AM
[NMR paper] Detecting protein kinase recognition modes of calmodulin by residual dipolar coupling
Detecting protein kinase recognition modes of calmodulin by residual dipolar couplings in solution NMR. Related Articles Detecting protein kinase recognition modes of calmodulin by residual dipolar couplings in solution NMR. Biochemistry. 2002 Oct 29;41(43):12899-906 Authors: Mal TK, Skrynnikov NR, Yap KL, Kay LE, Ikura M Calmodulin-regulated serine/threonine kinases (CaM kinases) play crucial roles in Ca2+-dependent signaling transduction pathways in eukaryotes. Despite having a similar overall molecular architecture of catalytic and...
nmrlearner Journal club 0 11-24-2010 08:58 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:15 PM.


Map