BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-04-2015, 03:00 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.

Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.

Related Articles Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.

Phys Chem Chem Phys. 2015 Aug 3;

Authors: Lamley JM, Lougher MJ, Sass HJ, Rogowski M, Grzesiek S, Lewandowski JR

Abstract
Typically, protein dynamics involve a complex hierarchy of motions occurring on different time scales between conformations separated by a range of different energy barriers. NMR relaxation can in principle provide a site-specific picture of both the time scales and amplitudes of these motions, but independent relaxation rates sensitive to fluctuations in different time scale ranges are required to obtain a faithful representation of the underlying dynamic complexity. This is especially pertinent for relaxation measurements in the solid state, which report on dynamics in a broader window of time scales by more than 3 orders of magnitudes compared to solution NMR relaxation. To aid in unraveling the intricacies of biomolecular dynamics we introduce (13)C spin-lattice relaxation in the rotating frame (R1?) as a probe of backbone nanosecond-microsecond motions in proteins in the solid state. We present measurements of (13)C' R1? rates in fully protonated crystalline protein GB1 at 600 and 850 MHz (1)H Larmor frequencies and compare them to (13)C' R1, (15)N R1 and R1? measured under the same conditions. The addition of carbon relaxation data to the model free analysis of nitrogen relaxation data leads to greatly improved characterization of time scales of protein backbone motions, minimizing the occurrence of fitting artifacts that may be present when (15)N data is used alone. We also discuss how internal motions characterized by different time scales contribute to (15)N and (13)C relaxation rates in the solid state and solution state, leading to fundamental differences between them, as well as phenomena such as underestimation of picosecond-range motions in the solid state and nanosecond-range motions in solution.


PMID: 26234369 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] General Order Parameter based Correlation Analysis of Protein Backbone Motions between Experimental NMR Relaxation Measurements and Molecular Dynamics Simulations.
General Order Parameter based Correlation Analysis of Protein Backbone Motions between Experimental NMR Relaxation Measurements and Molecular Dynamics Simulations. Related Articles General Order Parameter based Correlation Analysis of Protein Backbone Motions between Experimental NMR Relaxation Measurements and Molecular Dynamics Simulations. Biochem Biophys Res Commun. 2015 Jan 16; Authors: Liu Q, Shi C, Yu L, Zhang L, Xiong Y, Tian C Abstract Internal backbone dynamic motions are essential for different protein functions and...
nmrlearner Journal club 0 01-21-2015 08:39 PM
General Order Parameter based Correlation Analysis of Protein Backbone Motions between Experimental NMR Relaxation Measurements and Molecular Dynamics Simulations
General Order Parameter based Correlation Analysis of Protein Backbone Motions between Experimental NMR Relaxation Measurements and Molecular Dynamics Simulations Publication date: Available online 16 January 2015 Source:Biochemical and Biophysical Research Communications</br> Author(s): Qing Liu , Chaowei Shi , Lu Yu , Longhua Zhang , Ying Xiong , Changlin Tian</br> Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and...
nmrlearner Journal club 0 01-17-2015 04:14 PM
[NMR paper] Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR (15)N-Relaxation Measurements.
Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR (15)N-Relaxation Measurements. Related Articles Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR (15)N-Relaxation Measurements. Biophys J. 2014 Oct 7;107(7):1697-1702 Authors: Lo RH, Kroncke BM, Solomon TL, Columbus L Abstract The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane...
nmrlearner Journal club 0 10-09-2014 07:31 PM
Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR 15N-Relaxation Measurements
Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR 15N-Relaxation Measurements Publication date: 7 October 2014 Source:Biophysical Journal, Volume 107, Issue 7</br> Author(s): Ryan*H. Lo , Brett*M. Kroncke , Tsega*L. Solomon , Linda Columbus</br> The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane proteins, the nitroxide appears to have more interactions with the protein surface, potentially hindering the...
nmrlearner Journal club 0 10-08-2014 04:17 AM
[NMR paper] Backbone dynamics of the olfactory marker protein as studied by 15N NMR relaxation measurements.
Backbone dynamics of the olfactory marker protein as studied by 15N NMR relaxation measurements. Related Articles Backbone dynamics of the olfactory marker protein as studied by 15N NMR relaxation measurements. Biochemistry. 2005 Jul 19;44(28):9673-9 Authors: Gitti RK, Wright NT, Margolis JW, Varney KM, Weber DJ, Margolis FL Nuclear magnetic resonance (NMR) (15)N relaxation measurements of the olfactory marker protein (OMP) including longitudinal relaxation (T(1)), transverse relaxation (T(2)), and (15)N-{(1)H} NOE data were collected at low...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Thermodynamic interpretation of protein dynamics from NMR relaxation measurements.
Thermodynamic interpretation of protein dynamics from NMR relaxation measurements. Related Articles Thermodynamic interpretation of protein dynamics from NMR relaxation measurements. Protein Pept Lett. 2005 Apr;12(3):235-40 Authors: Spyracopoulos L Protein dynamics and thermodynamics can be characterized through measurements of relaxation rates of side chain (2)H and (13)C, and backbone (15)N nuclei using NMR spectroscopy. The rates reflect protein motions on timescales from picoseconds to milliseconds. Backbone and methyl side chain NMR...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Site-specific backbone dynamics from a crystalline protein by solid-state NMR spectro
Site-specific backbone dynamics from a crystalline protein by solid-state NMR spectroscopy. Related Articles Site-specific backbone dynamics from a crystalline protein by solid-state NMR spectroscopy. J Am Chem Soc. 2004 Sep 22;126(37):11422-3 Authors: Giraud N, Böckmann A, Lesage A, Penin F, Blackledge M, Emsley L Site-specific nitrogen-15 longitudinal relaxation rates are measured for the microcrystalline dimeric form of the protein Crh using multidimensional high-resolution solid-state NMR methods. The measured rates are used to provide a...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] Superslow backbone protein dynamics as studied by 1D solid-state MAS exchange NMR spe
Superslow backbone protein dynamics as studied by 1D solid-state MAS exchange NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Superslow backbone protein dynamics as studied by 1D solid-state MAS exchange NMR spectroscopy. J Magn Reson. 1999 Jun;138(2):244-55 Authors: Krushelnitsky A, Reichert D, Hempel G, Fedotov V, Schneider H, Yagodina L, Schulga A Superslow backbone dynamics of the protein barstar and the polypeptide polyglycine was studied by...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:43 AM.


Map