BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-10-2023, 09:54 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Unfolding under pressure: an NMR perspective

Unfolding under pressure: an NMR perspective

This review aims at analysing the role of solution nuclear magnetic resonance (NMR) in pressure-induced in vitro studies of protein unfolding. Although this transition has for many years been neglected because of technical difficulties, it provides important information about the forces that keep together protein structure. We first analyse what is pressure unfolding. We then provide a critical overview of how NMR has contributed to the field and evaluate the observables used in these studies....

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Cavities and Cooperativity in the Folding of the Leucine Rich Repeat Protein PP32: A Pressure-Jump Fluorescence and High Pressure NMR Study
Cavities and Cooperativity in the Folding of the Leucine Rich Repeat Protein PP32: A Pressure-Jump Fluorescence and High Pressure NMR Study Publication date: 3 February 2017 Source:Biophysical Journal, Volume 112, Issue 3, Supplement 1</br> Author(s): Kelly A. Jenkins, Martin Fossat, Thuy Dao, Yi Zhang, Zackery White, Doug Barrick, Catherine A. Royer</br> </br></br> </br></br> More...
nmrlearner Journal club 0 02-03-2017 09:55 PM
[NMR paper] Is pressure-induced signal loss in NMR spectra for the Leu99Ala cavity mutant of T4 lysozyme due to unfolding?
Is pressure-induced signal loss in NMR spectra for the Leu99Ala cavity mutant of T4 lysozyme due to unfolding? http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-pnas_full.gif Related Articles Is pressure-induced signal loss in NMR spectra for the Leu99Ala cavity mutant of T4 lysozyme due to unfolding? Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):E923 Authors: Kitahara R, Mulder FA PMID: 25630507
nmrlearner Journal club 0 04-29-2015 03:49 PM
[NMR paper] Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein.
Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein. Related Articles Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein. Chembiochem. 2013 Jun 28; Authors: Roche J, Ying J, Maltsev AS, Bax A Abstract The impact of pressure on the backbone (15) N, (1) H and (13) C chemical shifts in N-terminally acetylated ?-synuclein has been evaluated over a pressure range 1-2500 bar. Even while the chemical shifts fall very close...
nmrlearner Journal club 0 07-03-2013 01:46 PM
Mapping of unfolding states of integral helical membrane proteins by GPS-NMR and scattering techniques: TFE-induced unfolding of KcsA in DDM surfactant
Mapping of unfolding states of integral helical membrane proteins by GPS-NMR and scattering techniques: TFE-induced unfolding of KcsA in DDM surfactant September 2012 Publication year: 2012 Source:Biochimica et Biophysica Acta (BBA) - Biomembranes, Volume 1818, Issue 9</br> </br> Membrane proteins are vital for biological function, and their action is governed by structural properties critically depending on their interactions with the membranes. This has motivated considerable interest in studies of membrane protein folding and unfolding. Here the structural changes...
nmrlearner Journal club 0 02-03-2013 10:13 AM
[NMR paper] Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate reveal
Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. Related Articles Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. J Mol Biol. 2002 Sep 27;322(4):841-9 Authors: Fowler SB, Best RB, Toca Herrera JL, Rutherford TJ, Steward A, Paci E, Karplus M, Clarke J The mechanical unfolding of an immunoglobulin domain from the...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Thermodynamics of unfolding of ribonuclease A under high pressure. A study by proton
Thermodynamics of unfolding of ribonuclease A under high pressure. A study by proton NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Thermodynamics of unfolding of ribonuclease A under high pressure. A study by proton NMR. J Mol Biol. 1995 Jul 28;250(5):689-94 Authors: Yamaguchi T, Yamada H, Akasaka K Thermodynamic stability of ribonuclease A (6.2 mM pH 1.0, 0.15 M KCl, in 2H2O) has been studied in the pressure range of 1 to 2000 atm and in the temperature range...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] NMR study of the cold, heat, and pressure unfolding of ribonuclease A.
NMR study of the cold, heat, and pressure unfolding of ribonuclease A. Related Articles NMR study of the cold, heat, and pressure unfolding of ribonuclease A. Biochemistry. 1995 Jul 11;34(27):8631-41 Authors: Zhang J, Peng X, Jonas A, Jonas J The reversible cold, heat, and pressure unfolding of RNase A and RNase A--inhibitor complex were studied by 1D and 2D 1H NMR spectroscopy. The reversible pressure denaturation experiments in the pressure range from 1 bar to 5 kbar were carried out at pH 2.0 and 10 degrees C. The cold denaturation was...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] High-resolution NMR study of the pressure-induced unfolding of lysozyme.
High-resolution NMR study of the pressure-induced unfolding of lysozyme. Related Articles High-resolution NMR study of the pressure-induced unfolding of lysozyme. Biochemistry. 1992 Sep 1;31(34):7773-8 Authors: Samarasinghe SD, Campbell DM, Jonas A, Jonas J The pressure-induced reversible unfolding of lysozyme was investigated by high-resolution proton magnetic resonance spectroscopy by following the proton spectra of the following residues: His-15 epsilon 1, Trp-28 epsilon 3, Leu-17 delta 2, Cys-64 alpha, and Trp-108 epsilon 3. The...
nmrlearner Journal club 0 08-21-2010 11:45 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:09 AM.


Map