Related ArticlesUnfolding kinetics of tryptophan side chains in the dimerization and hinge regions of HIV-I protease tethered dimer by real time NMR spectroscopy.
Biochem Biophys Res Commun. 2000 Mar 16;269(2):387-92
Authors: Panchal SC, Hosur RV
HIV I protease has been the target of extensive and variety of investigations in recent years because of its importance in the AIDS viral life cycle. We describe here real time NMR studies on the unfolding kinetics of two tryptophans, W6 and W42, which are located in the dimerization and hinge domains of the protein, respectively. Unfolding seems to get initiated in the dimerization domain. The kinetic data at two temperatures, 32 and 42 degrees C, can both be described by two-state models for both the tryptophans, and the final state reached at 42 degrees C does not depend on the path of unfolding. Unfolding free energy changes derived from the kinetic fitting parameters are less than 3 kJ/mol, indicating that the energy landscape is very shallow. The free energy values and the rates for the two tryptophans are different at 32 degrees C, but are nearly the same at 42 degrees C. These are interpreted in the light of the "new view" of protein folding and the relative behaviors of the two tryptophans suggest the existence of cooperative pathways in the unfolding reaction of the protein. These observations would provide valuable insights into protein function, stability, and effects of nonactive site mutations conferring drug resistance.
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion [Biophysics and Computational Biology]
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion
Meinhold, D. W., Wright, P. E....
Date: 2011-05-31
Detailed understanding of protein function and malfunction hinges on the ability to characterize transiently populated states and the transitions between them. Here, we use 15N, , and 13CO NMR R2 relaxation dispersion to investigate spontaneous unfolding and refolding events of native apomyoglobin. Above pH 5.0, dispersion is dominated by processes involving fluctuations of the F-helix region, which...
nmrlearner
Journal club
0
05-31-2011 11:41 PM
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion.
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion.
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion.
Proc Natl Acad Sci U S A. 2011 May 11;
Authors: Meinhold DW, Wright PE
Detailed understanding of protein function and malfunction hinges on the ability to characterize transiently populated states and the transitions between them. Here, we use (15)N, , and (13)CO NMR R(2)...
nmrlearner
Journal club
0
05-13-2011 02:40 PM
[CNS Yahoo group] Double protonated His side chains have charge +1 independent of pH
Double protonated His side chains have charge +1 independent of pH
Hi all, I am using ccpn/aria/cns combination for my structural work. I discovered a probably bad fact during the aria/cns structure calculation. In the ccpn
More...
nmrlearner
News from other NMR forums
0
01-20-2011 03:28 AM
[NMR paper] NMR assignment of protein side chains using residue-correlated labeling and NOE spect
NMR assignment of protein side chains using residue-correlated labeling and NOE spectra.
Related Articles NMR assignment of protein side chains using residue-correlated labeling and NOE spectra.
J Magn Reson. 2003 Dec;165(2):237-47
Authors: Mueller GA, Kirby TW, DeRose EF, London RE
A new approach for the isotopic labeling of proteins is proposed that aims to facilitate side chain resonance assignments. Residue-correlated (RC) labeling is achieved by the expression of a protein on a medium containing a mixture of labeled, e.g., amino acids,...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
[NMR paper] The effects of mutations on motions of side-chains in protein L studied by 2H NMR dyn
The effects of mutations on motions of side-chains in protein L studied by 2H NMR dynamics and scalar couplings.
Related Articles The effects of mutations on motions of side-chains in protein L studied by 2H NMR dynamics and scalar couplings.
J Mol Biol. 2003 Jun 6;329(3):551-63
Authors: Millet O, Mittermaier A, Baker D, Kay LE
Recently developed 2H spin relaxation experiments are applied to study the dynamics of methyl-containing side-chains in the B1 domain of protein L and in a pair of point mutants of the domain, F22L and A20V. X-ray and...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Determination of pKa values of the histidine side chains of phosphatidylinositol-spec
Determination of pKa values of the histidine side chains of phosphatidylinositol-specific phospholipase C from Bacillus cereus by NMR spectroscopy and site-directed mutagenesis.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Determination of pKa values of the histidine side chains of phosphatidylinositol-specific phospholipase C from Bacillus cereus...
nmrlearner
Journal club
0
08-22-2010 05:08 PM
[NMR paper] Stopped-flow NMR spectroscopy: real-time unfolding studies of 6-19F-tryptophan-labele
Stopped-flow NMR spectroscopy: real-time unfolding studies of 6-19F-tryptophan-labeled Escherichia coli dihydrofolate reductase.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Stopped-flow NMR spectroscopy: real-time unfolding studies of 6-19F-tryptophan-labeled Escherichia coli dihydrofolate reductase.
Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9318-22
Authors: Hoeltzli SD, Frieden C
Escherichia coli dihydrofolate reductase (DHFR; EC 1.5.1.3) contains...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
[NMR paper] Carbon-13 NMR studies of the lysine side chains of calmodulin and its proteolytic fra
Carbon-13 NMR studies of the lysine side chains of calmodulin and its proteolytic fragments.
Related Articles Carbon-13 NMR studies of the lysine side chains of calmodulin and its proteolytic fragments.
J Protein Chem. 1993 Dec;12(6):695-707
Authors: Huque ME, Vogel HJ
The pH-titration and dynamic behaviour of the seven lysine side chains in bovine calmodulin were studied by carbon-13 NMR. The amino groups of the calcium saturated protein and its proteolytic fragments TR1C (1-75) and TR2C (78-148) were dimethylated with carbon-13 labeled...