Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins.
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins.
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins.
J Biol Chem. 2011 Apr 20;
Authors: Iwasa H, Meshitsuka S, Hongo K, Mizobata T, Kawata Y
Co-chaperonin GroES from E. coli works with chaperonin GroEL to mediate the folding reactions of various proteins. However, under specific conditions, i. e., the...
nmrlearner
Journal club
0
04-22-2011 02:00 PM
Comprehensive determination of 3JHNHα for unfolded proteins using 13C�-resolved spin-echo difference spectroscopy
Comprehensive determination of 3JHNHα for unfolded proteins using 13C�-resolved spin-echo difference spectroscopy
Abstract An experiment is presented to determine 3JHNHα coupling constants, with significant advantages for applications to unfolded proteins. The determination of coupling constants for the peptide chain using 1D 1H, or 2D and 3D 1H-15N correlation spectroscopy is often hampered by extensive resonance overlap when dealing with flexible, disordered proteins. In the experiment detailed here, the overlap problem is largely circumvented by recording 1H-13C� correlation...
nmrlearner
Journal club
0
01-09-2011 12:46 PM
Pseudo-4D triple resonance experiments to resolve HN overlap in the backbone assignment of unfolded proteins
Pseudo-4D triple resonance experiments to resolve HN overlap in the backbone assignment of unfolded proteins
Abstract The solution NMR resonance assignment of the protein backbone is most commonly carried out using triple resonance experiments that involve 15N and 1HN resonances. The assignment becomes problematic when there is resonance overlap of 15Nâ??1HN cross peaks. For such residues, one cannot unambiguously link the â??leftâ?? side of the NH root to the â??rightâ?? side, and the residues associated with such overlapping HN resonances remain often unassigned. Here we present a...
nmrlearner
Journal club
0
12-31-2010 08:38 PM
[NMR paper] Millisecond protein folding studied by NMR spectroscopy.
Millisecond protein folding studied by NMR spectroscopy.
Related Articles Millisecond protein folding studied by NMR spectroscopy.
Protein Pept Lett. 2005 Feb;12(2):139-46
Authors: Zeeb M, Balbach J
Proteins are involved in virtually every biological process and in order to function, it is necessary for these polypeptide chains to fold into the unique, native conformation. This folding process can take place rapidly. NMR line shape analyses and transverse relaxation measurements allow protein folding studies on a microsecond-to-millisecond...
nmrlearner
Journal club
0
11-24-2010 11:14 PM
[NMR paper] Dynamics in the unfolded state of beta2-microglobulin studied by NMR.
Dynamics in the unfolded state of beta2-microglobulin studied by NMR.
Related Articles Dynamics in the unfolded state of beta2-microglobulin studied by NMR.
J Mol Biol. 2005 Feb 11;346(1):279-94
Authors: Platt GW, McParland VJ, Kalverda AP, Homans SW, Radford SE
Many proteins form amyloid-like fibrils in vitro under conditions that favour the population of partially folded conformations or denatured state ensembles. Characterising the structural and dynamic properties of these states is crucial towards understanding the mechanisms of...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] Protein folding studied by real-time NMR spectroscopy.
Protein folding studied by real-time NMR spectroscopy.
Related Articles Protein folding studied by real-time NMR spectroscopy.
Methods. 2004 Sep;34(1):65-74
Authors: Zeeb M, Balbach J
Real-time NMR spectroscopy developed to a generally applicable method to follow protein folding reactions. It combines the access to high resolution data with kinetic experiments allowing very detailed insights into the development of the protein structure during different steps of folding. The present review concentrates mainly on the progress of real-time NMR...
nmrlearner
Journal club
0
11-24-2010 10:01 PM
[NMR paper] Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR.
Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--arjournals.annualreviews.org-images-AnnualReviews100x25.gif Related Articles Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR.
Annu Rev Biophys Biomol Struct. 1992;21:243-65
Authors: Englander SW, Mayne L
HX-labeling experiments in the pH-pulse mode show that protein folding can be remarkably fast. A near-native form can be reached within milliseconds. Experimental analysis of...
nmrlearner
Journal club
0
08-21-2010 11:41 PM
Theoretical framework for NMR residual dipolar couplings in unfolded proteins
Theoretical framework for NMR residual dipolar couplings in unfolded proteins
O. I. Obolensky, Kai Schlepckow, Harald Schwalbe and A. V. Solov’yov
Journal of Biomolecular NMR; 2007; 39(1) pp 1-16
Abstract:
A theoretical framework for the prediction of nuclear magnetic resonance (NMR) residual dipolar couplings (RDCs) in unfolded proteins under weakly aligning conditions is presented. The unfolded polypeptide chain is modeled as a random flight chain while the alignment medium is represented by a set of regularly arranged obstacles. For the case of bicelles oriented perpendicular to...