BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-07-2018, 08:27 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Ultrashort Broadband Cooperative Pulses for Multidimensional Biomolecular NMR Experiments

Ultrashort Broadband Cooperative Pulses for Multidimensional Biomolecular NMR Experiments


NMR spectroscopy at ultra-high magnetic fields requires improved radiofrequency (rf) pulses to cover the increased spectral bandwidth. We introduce optimized 90° pulse pairs as Ramsey-type cooperative (Ram-COOP) pulses for biomolecular NMR applications. The Ram-COOP element provides broadband excitation with enhanced sensitivity and reduced artifacts even at magnetic fields >1.0 GHz 1H Larmor frequency (23 T). A pair of 30 ?s Ram-COOP pulses achieves an excitation bandwidth of 100 kHz with a maximum rf field of 20 kHz, more than three-fold improved compared to achievable excitation by rectangular pulses. Ram-COOP pulses exhibit little offset-dependent phase errors and are robust to rf inhomogeneity. The performance of the Ram-COOP element is experimentally confirmed with heteronuclear multidimensional NMR experiments, applied to proteins and nucleic acids. Ram-COOP provides broadband excitation at low rf field strength suitable for application at current magnetic fields and beyond 23 T.

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Ultrashort Broadband Cooperative Pulses for Multidimensional Biomolecular NMR Experiments.
Ultrashort Broadband Cooperative Pulses for Multidimensional Biomolecular NMR Experiments. Related Articles Ultrashort Broadband Cooperative Pulses for Multidimensional Biomolecular NMR Experiments. Angew Chem Int Ed Engl. 2018 Mar 05;: Authors: Asami S, Kallies W, Günther J, Stavropoulou M, Glaser S, Sattler M Abstract NMR spectroscopy at ultra-high magnetic fields requires improved radiofrequency (rf) pulses to cover the increased spectral bandwidth. We introduce optimized 90° pulse pairs as Ramsey-type cooperative...
nmrlearner Journal club 0 03-07-2018 08:27 PM
Enhancing the sensitivity of multidimensional NMR experiments by using triply-compensated Ï? pulses
Enhancing the sensitivity of multidimensional NMR experiments by using triply-compensated Ï? pulses Abstract In multidimensional solution NMR experiments, Ï? pulses are used extensively for inversion and refocusing operations on 1H, 13C and 15N nuclei. Pulse miscalibration, off-resonance effects, and J-coupling evolution during Ï? pulse execution result in severe signal losses that are exacerbated at high magnetic fields. Here, we report the implementation of a triply-compensated Ï? pulse (G5) optimized for both inversion and refocusing in widely used...
nmrlearner Journal club 0 11-21-2017 10:10 PM
[NMR paper] Applications of high dimensionality experiments to biomolecular NMR.
Applications of high dimensionality experiments to biomolecular NMR. Applications of high dimensionality experiments to biomolecular NMR. Prog Nucl Magn Reson Spectrosc. 2015 Nov;90-91:49-73 Authors: Nowakowski M, Saxena S, Stanek J, ?erko S, Ko?mi?ski W Abstract High dimensionality NMR experiments facilitate resonance assignment and precise determination of spectral parameters such as coupling constants. Sparse non-uniform sampling enables acquisition of experiments of high dimensionality with high resolution in acceptable...
nmrlearner Journal club 0 11-26-2015 12:13 AM
Applications of high dimensionality experiments to biomolecular NMR
Applications of high dimensionality experiments to biomolecular NMR Publication date: Available online 11 July 2015 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Micha? Nowakowski , Saurabh Saxena , Jan Stanek , Szymon ?erko , Wiktor Ko?mi?ski</br> High dimensionality NMR experiments facilitate resonance assignment and precise determination of spectral parameters such as coupling constants. Sparse non-uniform sampling enables acquisition of experiments of high dimensionality with high resolution in acceptable time. In this review...
nmrlearner Journal club 0 07-12-2015 07:12 AM
Optimization of an absolute sensitivity in a glassy matrix during DNP-enhanced multidimensional solid-state NMR experiments
From The DNP-NMR Blog: Optimization of an absolute sensitivity in a glassy matrix during DNP-enhanced multidimensional solid-state NMR experiments Takahashi, H., et al., Optimization of an absolute sensitivity in a glassy matrix during DNP-enhanced multidimensional solid-state NMR experiments. J Magn Reson, 2013. 239C(0): p. 91-99. http://www.ncbi.nlm.nih.gov/pubmed/24480716
nmrlearner News from NMR blogs 0 02-10-2014 08:46 PM
[NMR paper] Simple multidimensional NMR experiments to obtain different types of one-bond dipolar
Simple multidimensional NMR experiments to obtain different types of one-bond dipolar couplings simultaneously. Related Articles Simple multidimensional NMR experiments to obtain different types of one-bond dipolar couplings simultaneously. J Biomol NMR. 2001 Jan;19(1):63-7 Authors: de Alba E, Suzuki M, Tjandra N In order to measure residual dipolar couplings, the molecule under study has to be partially oriented in the presence of the magnetic field. It has been observed that some protein samples are not stable under the conditions imposed by...
nmrlearner Journal club 0 11-19-2010 08:32 PM
Broadband Heteronuclear Solid-State NMR Experiments by Exponentially Modulated Dipola
Broadband Heteronuclear Solid-State NMR Experiments by Exponentially Modulated Dipolar Recoupling without Decoupling. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc-MS.gif Related Articles Broadband Heteronuclear Solid-State NMR Experiments by Exponentially Modulated Dipolar Recoupling without Decoupling. J Phys Chem Lett. 2010 Jun 1;1(13):1952-1956 Authors: Nielsen AB, Straasø LA, Nieuwkoop AJ, Rienstra CM, Bjerring M, Nielsen NC We present a novel solid-state NMR method for...
nmrlearner Journal club 0 08-17-2010 03:36 AM
Spatially encoded strategies in the execution of biomolecular-oriented 3D NMR experiments
Spatially encoded strategies in the execution of biomolecular-oriented 3D NMR experiments Mor Mishkovsky, Maayan Gal and Lucio Frydman Journal of Biomolecular NMR; 2007; 39(4); pp 291-301 Abstract: Three-dimensional nuclear magnetic resonance (3D NMR) provides one of the foremost analytical tools available for the elucidation of biomolecular structure, function and dynamics. Executing a 3D NMR experiment generally involves scanning a series of time-domain signals S(t 3), as a function of two time variables (t 1, t 2) which need to undergo parametric incrementations throughout...
Deano Journal club 0 08-14-2008 09:53 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:07 AM.


Map