BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 10-15-2024, 11:40 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Ultrafast T(1)-T(1rho) NMR for Correlating Different Motional Regimes of Molecules

Ultrafast T(1)-T(1rho) NMR for Correlating Different Motional Regimes of Molecules

Nuclear magnetic resonance (NMR) relaxation times provide detailed information about molecular motions and local chemical environments. Longitudinal T(1) relaxation time is most often sensitive to relatively fast, nano- to picosecond ranges of molecular motion. Rotating frame T(1?) relaxation time reflects a much slower, micro- to millisecond range of motion, and the motional regime can be tuned by changing spin-lock field strength. Conventional methods for measuring T(1) and T(1?) relaxation...

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Accurate Determination of Motional Amplitudes in Biomolecules by Solid-State NMR
Accurate Determination of Motional Amplitudes in Biomolecules by Solid-State NMR Protein dynamics are an intrinsically important factor when considering a protein's biological function. Understanding these motions is often limited through the use of static structure determination methods, namely, X-ray crystallography and cryo-EM. Molecular simulations have allowed for the prediction of global and local motions of proteins from these static structures. Nevertheless, determining local dynamics at residue-specific resolution through direct measurement remains crucial.... More...
nmrlearner Journal club 0 03-28-2023 08:32 AM
[NMR paper] Accurate and Cost-Effective NMR Chemical Shift Predictions for Nucleic Acids Using a Molecules-in-Molecules Fragmentation-Based Method
Accurate and Cost-Effective NMR Chemical Shift Predictions for Nucleic Acids Using a Molecules-in-Molecules Fragmentation-Based Method We have developed, implemented, and assessed an efficient protocol for the prediction of NMR chemical shifts of large nucleic acids using our molecules-in-molecules (MIM) fragment-based quantum chemical approach. To assess the performance of our approach, MIM-NMR calculations are calibrated on a test set of three nucleic acids, where the structure is derived from solution-phase NMR studies. For DNA systems with multiple conformers, the one-layer MIM method...
nmrlearner Journal club 0 01-12-2023 02:17 PM
[NMR paper] Accurate and cost-effective NMR chemical shift predictions for proteins using a molecules-in-molecules fragmentation-based method.
Accurate and cost-effective NMR chemical shift predictions for proteins using a molecules-in-molecules fragmentation-based method. Related Articles Accurate and cost-effective NMR chemical shift predictions for proteins using a molecules-in-molecules fragmentation-based method. Phys Chem Chem Phys. 2020 Nov 27;: Authors: Chandy SK, Thapa B, Raghavachari K Abstract We have developed an efficient protocol using our two-layer Molecules-in-Molecules (MIM2) fragmentation-based quantum chemical method for the prediction of NMR chemical...
nmrlearner Journal club 0 11-29-2020 08:12 AM
Molecules - Special Issue “Hyperpolarized Molecules for Applications in Chemistry and Biomedicine”
From The DNP-NMR Blog: Molecules - Special Issue “Hyperpolarized Molecules for Applications in Chemistry and Biomedicine” Dear Colleagues, I am pleased to announce that the journal Molecules (ISSN 1420-3049, IF 3.098) is currently running an NMR-related special issue entitled "Hyperpolarized Molecules for Applications in Chemistry and Biomedicine". Molecules is fully open access and is a partner of the Swiss Chemical Society. Open access is supported by the authors and their institutes, and an Article Processing Charge (APC) of 1800 CHF applies to accepted papers.
nmrlearner News from NMR blogs 0 03-24-2019 10:41 PM
Two Dynamical Regimes of the Substrate Radical RearrangementReaction in B12-Dependent Ethanolamine Ammonia-Lyase ResolveContributions of Native Protein Configurations and Collective ConfigurationalFluctuations to Catalysis
Two Dynamical Regimes of the Substrate Radical RearrangementReaction in B12-Dependent Ethanolamine Ammonia-Lyase ResolveContributions of Native Protein Configurations and Collective ConfigurationalFluctuations to Catalysis http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.7b00294/20170614/images/medium/bi-2017-00294r_0007.gif Biochemistry DOI: 10.1021/acs.biochem.7b00294 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/3ffrdx0Ly_I More...
nmrlearner Journal club 0 06-16-2017 06:00 AM
[NMR paper] Changes in the NMR-derived motional parameters of the insulin receptor substrate 1 ph
Changes in the NMR-derived motional parameters of the insulin receptor substrate 1 phosphotyrosine binding domain upon binding to an interleukin 4 receptor phosphopeptide. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Changes in the NMR-derived motional parameters of the insulin receptor substrate 1 phosphotyrosine binding domain upon binding to an interleukin 4 receptor phosphopeptide. Biochemistry. 1997 Apr 8;36(14):4118-24 Authors: Olejniczak ET, Zhou MM, Fesik SW Proteins recognize...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Changes in the NMR-derived motional parameters of the insulin receptor substrate 1 ph
Changes in the NMR-derived motional parameters of the insulin receptor substrate 1 phosphotyrosine binding domain upon binding to an interleukin 4 receptor phosphopeptide. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Changes in the NMR-derived motional parameters of the insulin receptor substrate 1 phosphotyrosine binding domain upon binding to an interleukin 4 receptor phosphopeptide. Biochemistry. 1997 Apr 8;36(14):4118-24 Authors: Olejniczak ET, Zhou MM, Fesik SW Proteins recognize...
nmrlearner Journal club 0 08-22-2010 03:03 PM
Microsecond Time Scale Mobility in a Solid Protein As Studied by the (15)N R(1rho) Si
Microsecond Time Scale Mobility in a Solid Protein As Studied by the (15)N R(1rho) Site-Specific NMR Relaxation Rates. Related Articles Microsecond Time Scale Mobility in a Solid Protein As Studied by the (15)N R(1rho) Site-Specific NMR Relaxation Rates. J Am Chem Soc. 2010 Aug 6; Authors: Krushelnitsky A, Zinkevich T, Reichert D, Chevelkov V, Reif B For the first time, we have demonstrated the site-resolved measurement of reliable (i.e., free of interfering effects) (15)N R(1rho) relaxation rates from a solid protein to extract dynamic...
nmrlearner Journal club 0 08-17-2010 03:36 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:57 AM.


Map