BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-18-2010, 08:31 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shif

Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shift perturbation.

Related Articles Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shift perturbation.

Biochemistry. 1999 Jul 20;38(29):9242-53

Authors: Rajesh S, Sakamoto T, Iwamoto-Sugai M, Shibata T, Kohno T, Ito Y

The interaction between the 26 kDa yeast ubiquitin hydrolase (YUH1), involved in maintaining the monomeric ubiquitin pool in cells, and the 8.5 kDa yeast ubiquitin protein has been studied by heteronuclear multidimensional NMR spectroscopy. Chemical shift perturbation of backbone (1)H(N), (15)N, and (13)C(alpha) resonances of YUH1, in a YUH1-ubiquitin mixture and in a 35 kDa covalent complex with ubiquitin (a stable analogue of the tetrahedral reaction intermediate), was employed to identify the ubiquitin binding interface of YUH1. This interface mapped on the secondary structure of YUH1 suggests a wide area of contact for ubiquitin, encompassing the N-terminus, alpha1, alpha4, beta2, beta3, and beta6, coincident with the high specificity of YUH1 for ubiquitin. The presence of several hydrophobic clusters in the ubiquitin binding interface of YUH1 suggests that hydrophobic interactions are equally important as ionic interactions in contacting ubiquitin. The residues in the binding interface exhibit a high percentage of homology among the members of the ubiquitin C-terminal hydrolase family, indicating the well-conserved nature of the ubiquitin binding interface reported in this study. The secondary structure of YUH1, from our NMR studies, was similar to the recently determined structure of its human homologue ubiquitin C-terminal hydrolase L3 (UCH-L3), except for the absence of the helix H3 of UCH-L3. This region in YUH1 (helix H3 of UCH-L3) was least perturbed upon ubiquitin binding. Therefore, the binding interface was mapped onto the corresponding residues in the UCH-L3 crystal structure. A model for ubiquitin binding to YUH1 is proposed, in which a good correlation was observed for the lateral binding of ubiquitin to UCH-L3 (YUH1), stabilized by the electrostatic and hydrophobic interactions.

PMID: 10413498 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A
Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A Abstract Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain...
nmrlearner Journal club 0 09-30-2011 08:01 PM
NMR Reveals a Different Mode of Binding of the Stam2 VHS Domain to Ubiquitin and Diubiquitin,
NMR Reveals a Different Mode of Binding of the Stam2 VHS Domain to Ubiquitin and Diubiquitin, http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi101594a/aop/images/medium/bi-2010-01594a_0006.gif Biochemistry DOI: 10.1021/bi101594a http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/HJPaBUvhJsw More...
nmrlearner Journal club 0 12-15-2010 12:16 AM
NMR reveals a different mode of binding of the Stam2 VHS domain to ubiquitin and diubiquitin.
NMR reveals a different mode of binding of the Stam2 VHS domain to ubiquitin and diubiquitin. Related Articles NMR reveals a different mode of binding of the Stam2 VHS domain to ubiquitin and diubiquitin. Biochemistry. 2010 Dec 1; Authors: Lange A, Hoeller D, Wienk H, Marcillat O, Lancelin JM, Walker O The VHS domain of the Stam2 protein is a ubiquitin binding domain involved in the recognition of ubiquitinated proteins committed to lysosomal degradation. Among all VHS domains, the VHS domain of Stam proteins is the strongest binder to...
nmrlearner Journal club 0 12-03-2010 08:52 PM
[NMR paper] Selective interface detection: mapping binding site contacts in membrane proteins by
Selective interface detection: mapping binding site contacts in membrane proteins by NMR spectroscopy. Related Articles Selective interface detection: mapping binding site contacts in membrane proteins by NMR spectroscopy. J Am Chem Soc. 2005 Apr 27;127(16):5734-5 Authors: Kiihne SR, Creemers AF, de Grip WJ, Bovee-Geurts PH, Lugtenburg J, de Groot HJ Intermolecular contact surfaces are important regions where specific interactions mediate biological function. We introduce a new magic angle spinning solid state NMR technique, dubbed "selective...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Biochemical and NMR mapping of the interface between CREB-binding protein and ligand
Biochemical and NMR mapping of the interface between CREB-binding protein and ligand binding domains of nuclear receptor: beyond the LXXLL motif. Related Articles Biochemical and NMR mapping of the interface between CREB-binding protein and ligand binding domains of nuclear receptor: beyond the LXXLL motif. J Biol Chem. 2005 Feb 18;280(7):5682-92 Authors: Klein FA, Atkinson RA, Potier N, Moras D, Cavarelli J CBP, cAMP-response element-binding protein (CREB)-binding protein, plays an important role as a general cointegrator of various signaling...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] The binding site for UCH-L3 on ubiquitin: mutagenesis and NMR studies on the complex
The binding site for UCH-L3 on ubiquitin: mutagenesis and NMR studies on the complex between ubiquitin and UCH-L3. Related Articles The binding site for UCH-L3 on ubiquitin: mutagenesis and NMR studies on the complex between ubiquitin and UCH-L3. J Mol Biol. 1999 Sep 3;291(5):1067-77 Authors: Wilkinson KD, Laleli-Sahin E, Urbauer J, Larsen CN, Shih GH, Haas AL, Walsh ST, Wand AJ The ubiquitin fold is a versatile and widely used targeting signal that is added post-translationally to a variety of proteins. Covalent attachment of one or more...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] Characterization of the binding interface between ubiquitin and class I human ubiquit
Characterization of the binding interface between ubiquitin and class I human ubiquitin-conjugating enzyme 2b by multidimensional heteronuclear NMR spectroscopy in solution. Related Articles Characterization of the binding interface between ubiquitin and class I human ubiquitin-conjugating enzyme 2b by multidimensional heteronuclear NMR spectroscopy in solution. J Mol Biol. 1999 Jul 2;290(1):213-28 Authors: Miura T, Klaus W, Gsell B, Miyamoto C, Senn H Ubiquitin-conjugating enzymes (Ubc) are involved in ubiquitination of proteins in the...
nmrlearner Journal club 0 11-18-2010 08:31 PM
Ubiquitin structure by solid-state NMR
Protein Structure Determination by High-Resolution Solid-State NMR Spectroscopy: Application to Microcrystalline Ubiquitin Stephan G. Zech,* A. Joshua Wand, and Ann E. McDermott* http://pubs.acs.org/isubscribe/journals/jacsat/127/i24/figures/ja0503128n00001.gif Contribution from the Department of Chemistry, Columbia University, 3000 Broadway Mail Code 3113, New York, New York 10027, and Department of Biochemistry and Biophysics, University of Pennsylvania, The Johnson Research Foundation, Philadelphia, Pennsylvania 19104 J. Am. Chem. Soc., 127 (24), 8618 -8626, 2005.
nmrlearner Journal club 0 06-15-2005 07:00 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:09 AM.


Map