BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-09-2016, 04:47 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The tyrosine gate of the bacterial lectin FimH: a conformational analysis by NMR spectroscopy and X-ray crystallography.

The tyrosine gate of the bacterial lectin FimH: a conformational analysis by NMR spectroscopy and X-ray crystallography.

Related Articles The tyrosine gate of the bacterial lectin FimH: a conformational analysis by NMR spectroscopy and X-ray crystallography.

Chembiochem. 2015 May 26;16(8):1235-46

Authors: Fiege B, Rabbani S, Preston RC, Jakob RP, Zihlmann P, Schwardt O, Jiang X, Maier T, Ernst B

Abstract
Urinary tract infections caused by uropathogenic E. coli are among the most prevalent infectious diseases. The mannose-specific lectin FimH mediates the adhesion of the bacteria to the urothelium, thus enabling host cell invasion and recurrent infections. An attractive alternative to antibiotic treatment is the development of FimH antagonists that mimic the physiological ligand. A large variety of candidate drugs have been developed and characterized by means of in vitro studies and animal models. Here we present the X-ray co-crystal structures of FimH with members of four antagonist classes. In three of these cases no structural data had previously been available. We used NMR spectroscopy to characterize FimH-antagonist interactions further by chemical shift perturbation. The analysis allowed a clear determination of the conformation of the tyrosine gate motif that is crucial for the interaction with aglycone moieties and was not obvious from X-ray structural data alone. Finally, ITC experiments provided insight into the thermodynamics of antagonist binding. In conjunction with the structural information from X-ray and NMR experiments the results provide a mechanism for the often-observed enthalpy-entropy compensation of FimH antagonists that plays a role in fine-tuning of the interaction.


PMID: 25940742 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Analysis of cytochrome P450 CYP119 ligand-dependent conformational dynamics by two-dimensional NMR and X-ray crystallography.
Analysis of cytochrome P450 CYP119 ligand-dependent conformational dynamics by two-dimensional NMR and X-ray crystallography. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-standard-jbc_final.gif Related Articles Analysis of cytochrome P450 CYP119 ligand-dependent conformational dynamics by two-dimensional NMR and X-ray crystallography. J Biol Chem. 2015 Apr 17;290(16):10000-17 Authors: Basudhar D, Madrona Y, Kandel S, Lampe JN, Nishida CR, de Montellano PR ...
nmrlearner Journal club 0 06-20-2015 06:44 PM
[NMR paper] An integrative approach combining ion mobility mass spectrometry, X-ray crystallography and NMR spectroscopy to study the conformational dynamics of ?1 -antitrypsin upon ligand binding.
An integrative approach combining ion mobility mass spectrometry, X-ray crystallography and NMR spectroscopy to study the conformational dynamics of ?1 -antitrypsin upon ligand binding. An integrative approach combining ion mobility mass spectrometry, X-ray crystallography and NMR spectroscopy to study the conformational dynamics of ?1 -antitrypsin upon ligand binding. Protein Sci. 2015 May 26; Authors: Nyon MP, Prentice T, Day J, Kirkpatrick J, Sivalingam GN, Levy G, Haq I, Irving JA, Lomas DA, Christodoulou J, Gooptu B, Thalassinos K ...
nmrlearner Journal club 0 05-27-2015 10:39 AM
An integrative approach combining ion mobility mass spectrometry, X-ray crystallography and NMR spectroscopy to study the conformational dynamics of ?1-antitrypsin upon ligand binding
An integrative approach combining ion mobility mass spectrometry, X-ray crystallography and NMR spectroscopy to study the conformational dynamics of ?1-antitrypsin upon ligand binding Abstract Native mass spectrometry (MS) methods permit the study of multiple protein species within solution equilibria, whilst ion mobility (IM)-MS can report on conformational behaviour of specific states. We used IM-MS to study a conformationally labile protein (?1-antitrypsin) that undergoes pathological polymerisation in the context of point mutations. The folded, native state of the Z variant remains...
nmrlearner Journal club 0 05-26-2015 08:09 PM
[NMR paper] X-ray crystallography and NMR as tools for the study of protein tyrosine phosphatases.
X-ray crystallography and NMR as tools for the study of protein tyrosine phosphatases. X-ray crystallography and NMR as tools for the study of protein tyrosine phosphatases. Methods. 2013 Jul 27; Authors: Elena Gulerez I, Gehring K Abstract Protein tyrosine phosphatases (PTPs) are well recognized as key targets in a wide spectrum of diseases, such as diabetes, obesity and cancer. Their roles in these maladies have been successfully characterized by various methods. However, it is only by utilizing the entire gamut of tools and techniques...
nmrlearner Journal club 0 08-01-2013 12:56 PM
X-ray crystallography and NMR as tools for the study of protein tyrosine phosphatases
X-ray crystallography and NMR as tools for the study of protein tyrosine phosphatases Publication date: Available online 27 July 2013 Source:Methods</br> Author(s): Irina Elena Gulerez , Kalle Gehring</br> Protein tyrosine phosphatases (PTPs) are well recognized as key targets in a wide spectrum of diseases, such as diabetes, obesity and cancer. Their roles in these maladies have been successfully characterized by various methods. However, it is only by utilizing the entire gamut of tools and techniques available that we can build a sufficient knowledge of their...
nmrlearner Journal club 0 07-28-2013 07:11 AM
[NMR paper] Fluorinated Carbohydrates as Lectin Ligands: Dissecting Glycan-Cyanovirin Interactions by Using 19 F NMR Spectroscopy.
Fluorinated Carbohydrates as Lectin Ligands: Dissecting Glycan-Cyanovirin Interactions by Using 19 F NMR Spectroscopy. Fluorinated Carbohydrates as Lectin Ligands: Dissecting Glycan-Cyanovirin Interactions by Using 19 F NMR Spectroscopy. Chemistry. 2013 Feb 28; Authors: Matei E, André S, Glinschert A, Infantino AS, Oscarson S, Gabius HJ, Gronenborn AM Abstract NMR spectroscopy and isothermal titration calorimetry (ITC) are powerful methods to investigate ligand-protein interactions. Here, we present a versatile and sensitive fluorine NMR...
nmrlearner Journal club 0 03-01-2013 09:57 PM
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy Abstract Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of globular, modular and intrinsically disordered proteins, as well as proteinâ??protein and protein-DNA complexes. Here we characterized the conformation of a spin-label attached to the homodimeric protein CylR2 using a combination of X-ray crystallography, electron...
nmrlearner Journal club 0 01-31-2011 06:03 AM
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy.
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy. Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy. J Biomol NMR. 2011 Jan 28; Authors: Gruene T, Cho MK, Karyagina I, Kim HY, Grosse C, Giller K, Zweckstetter M, Becker S Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of...
nmrlearner Journal club 0 01-29-2011 12:35 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:03 AM.


Map