Related ArticlesTwo distinct protein-protein interactions between the NIT2 and NMR regulatory proteins are required to establish nitrogen metabolite repression in Neurospora crassa.
Mol Microbiol. 1997 Nov;26(4):721-9
Authors: Pan H, Feng B, Marzluf GA
Nitrogen metabolism is a highly regulated process in Neurospora crassa. The structural genes that encode nitrogen catabolic enzymes are subject to nitrogen metabolite repression, mediated by the positive-acting NIT2 protein and by the negative-acting NMR protein. NIT2, a globally acting factor, is a member of the GATA family of regulatory proteins and has a single Cys2/Cys2 zinc finger DNA-binding domain. The negative-acting NMR protein interacts via specific protein-protein binding with two distinct regions of the NIT2 protein, a short alpha-helical motif within the NIT2 DNA-binding domain and a second motif at its carboxy terminus. Deletions of segments of NIT2 throughout most of its length result in truncated proteins, which are still functional for activating gene expression; most of these mutant NIT2 proteins still allow proper nitrogen repression of nitrate reductase synthesis. In contrast, deletions or certain amino acid substitutions within the zinc finger and the carboxy-terminal tail result in a loss of nitrogen metabolite repression. Those mutated forms of NIT2 that are insensitive to nitrogen repression have also lost one of the NIT2-NMR protein-protein interactions. These results provide compelling evidence that the specific NIT2-NMR interactions have a regulatory function and play a central role in establishing nitrogen metabolite repression.
[NMR paper] Cell-free protein synthesis in an autoinduction system for NMR studies of protein-protein interactions.
Cell-free protein synthesis in an autoinduction system for NMR studies of protein-protein interactions.
Related Articles Cell-free protein synthesis in an autoinduction system for NMR studies of protein-protein interactions.
J Biomol NMR. 2005 Jul;32(3):235-41
Authors: Ozawa K, Jergic S, Crowther JA, Thompson PR, Wijffels G, Otting G, Dixon NA
Cell-free protein synthesis systems provide facile access to proteins in a nascent state that enables formation of soluble, native protein-protein complexes even if one of the protein components is prone...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] NMR structure of the HIV-1 regulatory protein VPR.
NMR structure of the HIV-1 regulatory protein VPR.
Related Articles NMR structure of the HIV-1 regulatory protein VPR.
J Mol Biol. 2003 Mar 14;327(1):215-27
Authors: Morellet N, Bouaziz S, Petitjean P, Roques BP
The human immunodeficiency virus type 1 (HIV-1) genome encodes a highly conserved regulatory gene product, Vpr (96 residues, 14kDa), which is incorporated into virions. In the infected cells, Vpr, expressed late in the virus cycle, is believed to function in the early phases of HIV-1 replication, such as nuclear migration of...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] NMR structure of the HIV-1 regulatory protein Vpr in H2O/trifluoroethanol. Comparison
NMR structure of the HIV-1 regulatory protein Vpr in H2O/trifluoroethanol. Comparison with the Vpr N-terminal (1-51) and C-terminal (52-96) domains.
Related Articles NMR structure of the HIV-1 regulatory protein Vpr in H2O/trifluoroethanol. Comparison with the Vpr N-terminal (1-51) and C-terminal (52-96) domains.
Eur J Biochem. 2002 Aug;269(15):3779-88
Authors: Wecker K, Morellet N, Bouaziz S, Roques BP
The human immunodeficiency virus type 1, HIV-1, genome encodes a highly conserved regulatory gene product, Vpr (96 amino acids), which is...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] NMR structure of the (1-51) N-terminal domain of the HIV-1 regulatory protein Vpr.
NMR structure of the (1-51) N-terminal domain of the HIV-1 regulatory protein Vpr.
Related Articles NMR structure of the (1-51) N-terminal domain of the HIV-1 regulatory protein Vpr.
Eur J Biochem. 1999 Dec;266(2):359-69
Authors: Wecker K, Roques BP
The human immunodeficiency virus type 1 (HIV-1) genome encodes a highly conserved 16 kDa regulatory gene product, Vpr (viral protein of regulation, 96 amino acid residues), which is incorporated into virions, in quantities equivalent to those of the viral Gag proteins. In the infected cells, Vpr is...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
[NMR paper] NMR structure of the (52-96) C-terminal domain of the HIV-1 regulatory protein Vpr: m
NMR structure of the (52-96) C-terminal domain of the HIV-1 regulatory protein Vpr: molecular insights into its biological functions.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR structure of the (52-96) C-terminal domain of the HIV-1 regulatory protein Vpr: molecular insights into its biological functions.
J Mol Biol. 1999 Feb 5;285(5):2105-17
Authors: Schüler W, Wecker K, de Rocquigny H, Baudat Y, Sire J, Roques BP
The HIV-1 regulatory protein Vpr (96 amino...
nmrlearner
Journal club
0
08-21-2010 04:03 PM
Postdoctoral position to study Protein-Protein Interactions and their role in Mechanisms of Signal Transduction using protein solution NMR/x-ray crystallography
Spincore.com are advertising a postdoc NMR position. It sounds pretty interesting.
"""
Postdoctoral position to study Protein-Protein Interactions and their role in Mechanisms of Signal Transduction using protein solution NMR /x-ray crystallography
Case Medical School, Cleveland, Ohio, USA
How are signaling events transmitted from one protein to another? To answer this question we are looking to add a postdoctoral co-workers to our interdisciplinary team. Our interest is to understand protein-protein interactions, protein structure and dynamics in the context of cell signaling...