BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-20-2012, 11:13 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default TSAR: a program for automatic resonance assignment using 2D cross-sections of high dimensionality, high-resolution spectra

TSAR: a program for automatic resonance assignment using 2D cross-sections of high dimensionality, high-resolution spectra


Abstract While NMR studies of proteins typically aim at structure, dynamics or interactions, resonance assignments represent in almost all cases the initial step of the analysis. With increasing complexity of the NMR spectra, for example due to decreasing extent of ordered structure, this task often becomes both difficult and time-consuming, and the recording of high-dimensional data with high-resolution may be essential. Random sampling of the evolution time space, combined with sparse multidimensional Fourier transform (SMFT), allows for efficient recording of very high dimensional spectra (�4 dimensions) while maintaining high resolution. However, the nature of this data demands for automation of the assignment process. Here we present the program TSAR (Tool for SMFT-based Assignment of Resonances), which exploits all advantages of SMFT input. Moreover, its flexibility allows to process data from any type of experiments that provide sequential connectivities. The algorithm was tested on several protein samples, including a disordered 81-residue fragment of the δ subunit of RNA polymerase from Bacillus subtilis containing various repetitive sequences. For our test examples, TSAR achieves a high percentage of assigned residues without any erroneous assignments.
  • Content Type Journal Article
  • Category Article
  • Pages 1-15
  • DOI 10.1007/s10858-012-9652-3
  • Authors
    • Anna Zawadzka-Kazimierczuk, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
    • Wiktor KoźmiÅ?ski, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
    • Martin Billeter, Biophysics Group, Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden

Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
high resolution nuclear magnetic resonance (nmr) spectra
high resolution nuclear magnetic resonance (nmr) spectra http://anniehalliday.com/biopics/large/missing.jpg http://anniehalliday.com/proteinnmr.html 21/06/2012 3:50:47 AM GMT More...
nmrlearner NMR pictures 0 06-24-2012 03:21 PM
High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins
High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins Abstract Four novel 5D (HACA(N)CONH, HNCOCACB, (HACA)CON(CA)CONH, (H)NCO(NCA)CONH), and one 6D ((H)NCO(N)CACONH) NMR pulse sequences are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in indirectly detected dimensions. The experiments facilitate resonance assignment of intrinsically disordered proteins. The novel pulse sequences were successfully tested using δ subunit (20 kDa) of Bacillus subtilis RNA polymerase...
nmrlearner Journal club 0 02-21-2012 03:40 AM
Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra
Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra Abstract Nuclear magnetic resonance (NMR) and Mass Spectroscopy (MS) are the two most common spectroscopic analytical techniques employed in metabolomics. The large spectral datasets generated by NMR and MS are often analyzed using data reduction techniques like Principal Component Analysis (PCA). Although rapid, these methods are susceptible to solvent and matrix effects, high rates of false positives, lack of reproducibility and limited data transferability from one platform to the next....
nmrlearner Journal club 0 03-03-2011 02:06 AM
High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field
High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field Abstract Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly-13C,15N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla (1H frequencies of...
nmrlearner Journal club 0 01-09-2011 12:46 PM
Sparsely-sampled High-resolution 4-D Experiments for Efficient Backbone Resonance Assignment of Disordered Proteins
Sparsely-sampled High-resolution 4-D Experiments for Efficient Backbone Resonance Assignment of Disordered Proteins Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 4 January 2011</br> Jie, Wen , Jihui, Wu , Pei, Zhou</br> Intrinsically disordered proteins (IDPs) play important roles in many critical cellular processes. Due to their limited chemical shift dispersion, IDPs often require four pairs of resonance connectivities (H?, C?, C? and CO) for establishing sequential backbone assignment. Because most conventional 4-D...
nmrlearner Journal club 0 01-05-2011 11:03 AM
[NMR paper] Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignm
Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment. Related Articles Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8009-14 Authors: Szyperski T, Yeh DC, Sukumaran DK, Moseley HN, Montelione GT A suite of reduced-dimensionality (13)C,(15)N,(1)H-triple-resonance NMR experiments is presented for rapid and complete protein resonance assignment. Even when using short measurement times, these experiments allow one to retain...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Tools for the automated assignment of high-resolution three-dimensional protein NMR s
Tools for the automated assignment of high-resolution three-dimensional protein NMR spectra based on pattern recognition techniques. Tools for the automated assignment of high-resolution three-dimensional protein NMR spectra based on pattern recognition techniques. J Biomol NMR. 1997 Oct;10(3):207-19 Authors: Croft D, Kemmink J, Neidig KP, Oschkinat H One of the major bottlenecks in the determination of proteinstructures by NMR is in the evaluation of the data produced by theexperiments. An important step in this process is assignment, where...
nmrlearner Journal club 0 08-22-2010 05:08 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:25 AM.


Map