BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-20-2011, 03:10 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default TROSY NMR Spectroscopy of Large Soluble Proteins.

TROSY NMR Spectroscopy of Large Soluble Proteins.

TROSY NMR Spectroscopy of Large Soluble Proteins.

Top Curr Chem. 2011 Sep 17;

Authors: Xu Y, Matthews S

Abstract
Solution nuclear magnetic resonance spectroscopy is usually only used to study proteins with molecular weight not exceeding about 50 kDa. This size limit has been lifted significantly in recent years, thanks to the development of labelling methods and the application of transverse-relaxation optimized spectroscopy (TROSY). In particular, methyl-specific labelling and methyl-TROSY have been shown to be effective for supramolecular systems as large as about 1 MDa. In this chapter we review the available methods for labelling different kinds of methyl groups and the assignment strategies in very large protein systems. Several proteins are selected as examples to show how NMR helps to reveal the details of structure, interaction and dynamics of these proteins.


PMID: 21928013 [PubMed - as supplied by publisher]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Three-dimensional deuterium-carbon correlation experiments for high-resolution solid-state MAS NMR spectroscopy of large proteins
Three-dimensional deuterium-carbon correlation experiments for high-resolution solid-state MAS NMR spectroscopy of large proteins Abstract Well-resolved 2Hâ??13C correlation spectra, reminiscent of 1Hâ??13C correlations, are obtained for perdeuterated ubiquitin and for perdeuterated outer-membrane protein G (OmpG) from E. coli by exploiting the favorable lifetime of 2H double-quantum (DQ) states. Sufficient signal-to-noise was achieved due to the short deuterium T 1, allowing for high repetition rates and enabling 3D experiments with a 2Hâ??13C transfer step in a reasonable time....
nmrlearner Journal club 0 11-01-2011 01:52 AM
Very simple combination of TROSY, CRINEPT and multiple quantum coherence for signal enhancement in an HN(CO)CA experiment for large proteins
Very simple combination of TROSY, CRINEPT and multiple quantum coherence for signal enhancement in an HN(CO)CA experiment for large proteins Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 3 February 2011</br> Monika, Bayrhuber , Roland, Riek</br> Sensitivity enhancement in liquid state nuclear magnetic resonance (NMR) triple resonance experiments for the sequential assignment of proteins is important for the investigation of large proteins or protein complexes. We present here the 3D TROSY-MQ/CRINEPT-HN(CO)CA which makes...
nmrlearner Journal club 0 02-04-2011 07:03 AM
Selective 1H-13C NMR spectroscopy of methyl groups in residually protonated samples of large proteins
Selective 1H-13C NMR spectroscopy of methyl groups in residually protonated samples of large proteins Abstract Methyl 13CHD2 isotopomers of all methyl-containing amino-acids can be observed in residually protonated samples of large proteins obtained from -glucose/D2O-based bacterial media, with sensitivity sufficient for a number of NMR applications. Selective detection of some subsets of methyl groups (Alaβ, Thrγ2) is possible using simple â??out-and-backâ?? NMR methodology. Such selective methyl-detected â??out-and-backâ?? NMR experiments allow complete assignments of threonine γ2...
nmrlearner Journal club 0 01-09-2011 12:46 PM
TROSY-selected ZZ-exchange experiment for characterizing slow chemical exchange in large proteins
TROSY-selected ZZ-exchange experiment for characterizing slow chemical exchange in large proteins Abstract A TROSY-selected ZZ-exchange experiment is described for measuring slow chemical exchange rates by monitoring the TROSY component of 15N longitudinal magnetization. Application of the proposed pulse sequence to the cadherin 8 N-terminal extracelluar domain demonstrates that enhanced sensitivity is obtained, compared to a previously described TROSY-detected ZZ-exchange sequence (Sahu et al. J Am Chem Soc 129: 13232â??13237, 2007), by preserving the TROSY effect during the mixing...
nmrlearner Journal club 0 01-09-2011 12:46 PM
Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins
Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins Abstract In the last 15 years substantial advances have been made to place isotope labels in native and glycosylated proteins for NMR studies and structure determination. Key developments include segmental isotope labeling using Native Chemical Ligation, Expressed Protein Ligation and Protein Trans-Splicing. These advances are pushing the size limit of NMR spectroscopy further making larger proteins accessible for this technique. It is just emerging that segmental isotope...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution
TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution. Related Articles TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution. Trends Biochem Sci. 2000 Oct;25(10):462-8 Authors: Riek R, Pervushin K, Wüthrich K TROSY and CRINEPT are new techniques for solution NMR studies of molecular and supramolecular structures. They allow the collection of high-resolution spectra of structures with molecular weights >100 kDa, significantly extending the range of macromolecular systems that can...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR tweet] Hadamard NMR spectroscopy for relaxation measurements of large (>35 kDa) proteins
Nuclear magnetic resonance lipoprotein subclasses and the apoe genotype influence carotid atheroscler... http://bit.ly/cHYtEg #Rheumatology Published by MDLinx (Sandeep Pulim MD) on 2010-08-16T07:24:44Z Source: Twitter
nmrlearner Twitter NMR 0 08-16-2010 02:01 AM
Hadamard NMR spectroscopy for relaxation measurements of large (>35 kDa) proteins
Hadamard NMR spectroscopy for relaxation measurements of large (>35 kDa) proteins B. Tom Burnley, Arnout P. Kalverda, Stephen J. Paisey, Alan Berry and Steve W. Homans Journal of Biomolecular NMR; 2007; 39(3) pp 239 - 245 Abstract: Here we present a suite of pulse sequences for the measurement of 15N T1, T1ρ and NOE data that combine traditional TROSY-based pulse sequences with band-selective Hadamard frequency encoding. The additive nature of the Hadamard matrix produces much reduced resonance overlap without the need for an increase in the dimensionality of the experiment or a...
linawaed Journal club 0 08-04-2008 10:43 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:57 PM.


Map