Abstract
Abstract Using the sugar transport protein, GalP, from Escherichia coli, which is a homologue of human GLUT transporters, we have overcome the challenges for achieving high-resolution [(15)N-(1)H]- and [(13)C-(1)H]-methyl-TROSY NMR spectra with a 52 kDa membrane protein that putatively has 12 transmembrane-spanning ?-helices and used the spectra to detect inhibitor binding. The protein reconstituted in DDM detergent micelles retained structural and functional integrity for at least 48 h at a temperature of 25 °C as demonstrated by circular dichroism spectroscopy and fluorescence measurements of ligand binding, respectively. Selective labelling of tryptophan residues reproducibly gave 12 resolved signals for tryptophan (15)N backbone positions and also resolved signals for (15)N side-chain positions. For improved sensitivity isoleucine, leucine and valine (ILV) methyl-labelled protein was prepared, which produced unexpectedly well resolved [(13)C-(1)H]-methyl-TROSY spectra showing clear signals for the majority of methyl groups. The GalP/GLUT inhibitor forskolin was added to the ILV-labelled sample inducing a pronounced chemical shift change in one Ile residue and more subtle changes in other methyl groups. This work demonstrates that high-resolution TROSY NMR spectra can be achieved with large complex ?-helical membrane proteins without the use of elevated temperatures. This is a prerequisite to applying further labelling strategies and NMR experiments for measurement of dynamics, structure elucidation and use of the spectra to screen ligand binding.
PMID: 24804563 [PubMed - as supplied by publisher]
[NMR paper] Screening protein-small molecule interactions by NMR.
Screening protein-small molecule interactions by NMR.
Related Articles Screening protein-small molecule interactions by NMR.
Methods Mol Biol. 2013;1008:389-413
Authors: Davis B
Abstract
Nuclear magnetic resonance (NMR) is well suited to probing the interactions between ligands and macromolecular receptors. It is a truly label-free technique, requiring only the presence of atoms (usually (1)H or (19)F) which give rise to observable resonances on either the ligand or the receptor. A number of parameters associated with these resonances can...
nmrlearner
Journal club
0
06-05-2013 06:53 PM
Small-Molecule Binding Sites on Proteins Establishedby Paramagnetic NMR Spectroscopy
Small-Molecule Binding Sites on Proteins Establishedby Paramagnetic NMR Spectroscopy
Jia-Ying Guan, Peter H. J. Keizers, Wei-Min Liu, Frank Lo?hr, Simon P. Skinner, Edwin A. Heeneman, Harald Schwalbe, Marcellus Ubbink and Gregg Siegal
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja401323m/aop/images/medium/ja-2013-01323m_0009.gif
Journal of the American Chemical Society
DOI: 10.1021/ja401323m
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/ZukfjIRmQq8
nmrlearner
Journal club
0
04-05-2013 11:03 PM
[NMR paper] Small molecule binding sites on proteins established by paramagnetic NMR spectroscopy.
Small molecule binding sites on proteins established by paramagnetic NMR spectroscopy.
Related Articles Small molecule binding sites on proteins established by paramagnetic NMR spectroscopy.
J Am Chem Soc. 2013 Mar 20;
Authors: Guan JY, Keizers PH, Liu WM, Loehr F, Skinner SP, Heeneman EA, Schwalbe H, Ubbink M, Siegal GD
Abstract
Determining the three dimensional structure of a small molecule-protein complex with weak affinity can be a significant challenge. We present a paramagnetic NMR method to determine intermolecular structure...
nmrlearner
Journal club
0
03-21-2013 02:58 PM
[NMR paper] NMR Methods for Detection of Small Molecule Binding to RGS4.
NMR Methods for Detection of Small Molecule Binding to RGS4.
Related Articles NMR Methods for Detection of Small Molecule Binding to RGS4.
Methods Enzymol. 2013;522:133-52
Authors: Storaska AJ, Neubig RR
Abstract
The duration and amplitude of G-protein-coupled receptor (GPCR) signaling is controlled by regulator of G-protein signaling (RGS) proteins. The 20 RGS family members act as GTPase accelerating proteins through their interaction with the G? subunit of the G??? heterotrimer. Their influence over GPCR signaling has attracted many to...
nmrlearner
Journal club
0
02-05-2013 09:51 PM
Understanding small-molecule binding to MDM2: insights into structural effects of isoindolinone inhibitors from NMR spectroscopy.
Understanding small-molecule binding to MDM2: insights into structural effects of isoindolinone inhibitors from NMR spectroscopy.
Understanding small-molecule binding to MDM2: insights into structural effects of isoindolinone inhibitors from NMR spectroscopy.
Chem Biol Drug Des. 2011 May;77(5):301-8
Authors: Riedinger C, Noble ME, Wright DJ, Mulks F, Hardcastle IR, Endicott JA, McDonnell JM
The interaction between murine double minute (MDM2) and p53 is a major target in anticancer drug design. Several potent compound series, including the nutlins...
nmrlearner
Journal club
0
08-05-2011 11:48 AM
[NMR paper] NMR structure of a complex between MDM2 and a small molecule inhibitor.
NMR structure of a complex between MDM2 and a small molecule inhibitor.
Related Articles NMR structure of a complex between MDM2 and a small molecule inhibitor.
J Biomol NMR. 2004 Oct;30(2):163-73
Authors: Fry DC, Emerson SD, Palme S, Vu BT, Liu CM, Podlaski F
MDM2 is a regulator of cell growth processes that acts by binding to the tumor suppressor protein p53 and ultimately restraining its activity. While inactivation of p53 by mutation is commonly observed in human cancers, a substantial percentage of tumors express wild type p53. In many of...
nmrlearner
Journal club
0
11-24-2010 10:01 PM
[NMR paper] Selective NMR observation of inhibitor and sugar binding to the galactose-H(+) sympor
Selective NMR observation of inhibitor and sugar binding to the galactose-H(+) symport protein GalP, of Escherichia coli.
Related Articles Selective NMR observation of inhibitor and sugar binding to the galactose-H(+) symport protein GalP, of Escherichia coli.
Biochim Biophys Acta. 2000 Dec 20;1509(1-2):55-64
Authors: Appleyard AN, Herbert RB, Henderson PJ, Watts A, Spooner PJ
The binding of the transport inhibitor forskolin, synthetically labelled with (13)C, to the galactose-H(+) symport protein GalP, overexpressed in its native inner...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] Probing the conformation of the sugar transport inhibitor phlorizin by 2D-NMR, molecu
Probing the conformation of the sugar transport inhibitor phlorizin by 2D-NMR, molecular dynamics studies, and pharmacophore analysis.
Related Articles Probing the conformation of the sugar transport inhibitor phlorizin by 2D-NMR, molecular dynamics studies, and pharmacophore analysis.
J Med Chem. 2000 May 4;43(9):1692-8
Authors: Wielert-Badt S, Lin JT, Lorenz M, Fritz S, Kinne RK
Sodium/D-glucose cotransport, one of the prototypes for sodium gradient-driven symport systems in kidney and intestine, is known to be inhibited by aromatic and...