A pair of triple resonance based CEST pulse schemes are presented for measuring 13Cα and 13Cβ chemical shifts of sparsely populated and transiently formed conformers that are invisible to traditional NMR experiments. CEST profiles containing dips at resonance positions of 13Cα or 13Cβ spins of major (ground) and minor (excited) conformers are obtained in a pseudo 3rd dimension that is generated by quantifying modulations of cross peaks in 15N, 1HN correlation spectra. An application to the folding reaction of a G48A mutant of the Fyn SH3 domain is presented, illustrating and validating the methodology.
Time-shared experiments for efficient assignment of triple-selectively labeled proteins
Time-shared experiments for efficient assignment of triple-selectively labeled proteins
Publication date: Available online 30 September 2014
Source:Journal of Magnetic Resonance</br>
Author(s): Frank Löhr , Aisha Laguerre , Christoph Bock , Sina Reckel , Peter J. Connolly , Norzehan Abdul-Manan , Franz Tumulka , Rupert Abele , Jonathan M. Moore , Volker Dötsch</br>
Combinatorial triple-selective labeling facilitates the NMR assignment process for proteins that are subject to signal overlap and insufficient signal-to-noise in standard triple-resonance...
nmrlearner
Journal club
0
10-01-2014 02:48 AM
Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins
Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins
Publication date: Available online 4 March 2014
Source:Journal of Magnetic Resonance</br>
Author(s): Veniamin Chevelkov , Birgit Habenstein , Antoine Loquet , Karin Giller , Stefan Becker , Adam Lange</br>
Proton-detected solid-state NMR was applied to a highly deuterated insoluble, non-crystalline biological assembly, the Salmonella typhimurium type iii secretion system (T3SS) needle. Spectra of very high resolution and sensitivity were obtained...
nmrlearner
Journal club
0
03-04-2014 06:37 PM
[NMR paper] Nanosecond timescale motions in proteins revealed by high-resolution NMR relaxometry.
Nanosecond timescale motions in proteins revealed by high-resolution NMR relaxometry.
Related Articles Nanosecond timescale motions in proteins revealed by high-resolution NMR relaxometry.
J Am Chem Soc. 2013 Nov 14;
Authors: Charlier CD, Khan SN, Marquardsen T, Pelupessy P, Reiss V, Sakellariou D, Bodenhausen G, Engelke F, Ferrage F
Abstract
Understanding the molecular determinants underlying protein function requires the characterization of both structure and dynamics at atomic resolution. Nuclear relaxation rates allow a precise...
nmrlearner
Journal club
0
11-16-2013 03:14 PM
Three-dimensional triple-resonance NMR Spectroscopy of isotopically enriched proteins
Three-dimensional triple-resonance NMR Spectroscopy of isotopically enriched proteins
Publication year: 2011
Source: Journal of Magnetic Resonance, Volume 213, Issue 2, December 2011, Pages 423-441</br>
Lewis E.*Kay, Mitsuhiko*Ikura, Rolf*Tschudin, Ad*Bax</br>
Four new and complementary three-dimensional triple-resonance experiments are described for obtaining complete backboneH,C, andN resonance assignments of proteins uniformly enriched withC andN. The new methods all rely onH detection and use multiple magnetization transfers through well-resolved one-bondJcouplings. Therefore, the...
nmrlearner
Journal club
0
12-11-2011 07:57 AM
Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins
Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins
Abstract Extensive resonance overlap exacerbates assignment of intrinsically disordered proteins (IDPs). This issue can be circumvented by utilizing 15N, 13C� and 1HN spins, where the chemical shift dispersion is mainly dictated by the characteristics of consecutive amino acid residues. Especially 15N and 13C� spins offer superior chemical shift dispersion in comparison to 13Cα and 13Cβ spins. However, HN-detected experiments...
nmrlearner
Journal club
0
01-29-2011 05:31 AM
Pseudo-4D triple resonance experiments to resolve HN overlap in the backbone assignment of unfolded proteins
Pseudo-4D triple resonance experiments to resolve HN overlap in the backbone assignment of unfolded proteins
Abstract The solution NMR resonance assignment of the protein backbone is most commonly carried out using triple resonance experiments that involve 15N and 1HN resonances. The assignment becomes problematic when there is resonance overlap of 15Nâ??1HN cross peaks. For such residues, one cannot unambiguously link the â??leftâ?? side of the NH root to the â??rightâ?? side, and the residues associated with such overlapping HN resonances remain often unassigned. Here we present a...
nmrlearner
Journal club
0
12-31-2010 08:38 PM
[NMR paper] Microsecond timescale backbone conformational dynamics in ubiquitin studied with NMR
Microsecond timescale backbone conformational dynamics in ubiquitin studied with NMR R1rho relaxation experiments.
Related Articles Microsecond timescale backbone conformational dynamics in ubiquitin studied with NMR R1rho relaxation experiments.
Protein Sci. 2005 Mar;14(3):735-42
Authors: Massi F, Grey MJ, Palmer AG
NMR spin relaxation experiments are used to characterize the dynamics of the backbone of ubiquitin. Chemical exchange processes affecting residues Ile 23, Asn 25, Thr 55, and Val 70 are characterized using on- and off-resonance...
nmrlearner
Journal club
0
11-24-2010 11:14 PM
[NMR paper] Protein dynamics measurements by TROSY-based NMR experiments.
Protein dynamics measurements by TROSY-based NMR experiments.
Related Articles Protein dynamics measurements by TROSY-based NMR experiments.
J Magn Reson. 2000 Apr;143(2):423-6
Authors: Zhu G, Xia Y, Nicholson LK, Sze KH
The described TROSY-based experiments for investigating backbone dynamics of proteins make it possible to elucidate internal motions in large proteins via measurements of T(1), T(2), and NOE of backbone (15)N nuclei. In our proposed sequences, the INEPT sequence is eliminated and the PEP sequence is replaced by the ST2-PT...