Related ArticlesTriple resonance [Formula: see text] NMR relaxation experiments for studies of intrinsically disordered proteins.
J Biomol NMR. 2017 Oct 25;:
Authors: Srb P, Nová?ek J, Kade?ávek P, Rabatinová A, Krásný L, Žídková J, Bobálová J, Sklená? V, Žídek L
Abstract
Description of protein dynamics is known to be essential in understanding their function. Studies based on a well established [Formula: see text] NMR relaxation methodology have been applied to a large number of systems. However, the low dispersion of [Formula: see text] chemical shifts very often observed within intrinsically disordered proteins complicates utilization of standard 2D HN correlated spectra because a limited number of amino acids can be characterized. Here we present a suite of triple resonance HNCO-type NMR experiments for measurements of five [Formula: see text] relaxation parameters ([Formula: see text], [Formula: see text], NOE, cross-correlated relaxation rates [Formula: see text] and [Formula: see text]) in doubly [Formula: see text],[Formula: see text]-labeled proteins. We show that the third spectral dimension combined with non-uniform sampling provides relaxation rates for almost all residues of a protein with extremely poor chemical shift dispersion, the C terminal domain of [Formula: see text]-subunit of RNA polymerase from Bacillus subtilis. Comparison with data obtained using a sample labeled by [Formula: see text] only showed that the presence of [Formula: see text] has a negligible effect on [Formula: see text], [Formula: see text], and on the cross-relaxation rate (calculated from NOE and [Formula: see text]), and that these relaxation rates can be used to calculate accurate spectral density values. Partially [Formula: see text]-labeled sample was used to test if the observed increase of [Formula: see text] [Formula: see text] in the presence of [Formula: see text] corresponds to the [Formula: see text] dipole-dipole interactions in the [Formula: see text],[Formula: see text]-labeled sample.
PMID: 29071460 [PubMed - as supplied by publisher]
Triple resonance $$^{15}\hbox {N}$$ 15 N NMR relaxation experiments for studies of intrinsically disordered proteins
Triple resonance $$^{15}\hbox {N}$$ 15 N NMR relaxation experiments for studies of intrinsically disordered proteins
Abstract
Description of protein dynamics is known to be essential in understanding their function. Studies based on a well established \(^{15}\hbox {N}\) NMR relaxation methodology have been applied to a large number of systems....
nmrlearner
Journal club
0
10-25-2017 10:14 PM
[NMR paper] On the use of time-averaging restraints when deriving biomolecular structure from [Formula: see text]-coupling values obtained from NMR experiments.
On the use of time-averaging restraints when deriving biomolecular structure from -coupling values obtained from NMR experiments.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles On the use of time-averaging restraints when deriving biomolecular structure from -coupling values obtained from NMR experiments.
J Biomol NMR. 2016 Sep 15;
Authors: Smith LJ, van Gunsteren WF, Hansen N
Abstract
Deriving molecular structure from...
nmrlearner
Journal club
0
09-22-2016 06:31 AM
Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein
Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein
Abstract
New experiments dedicated for large IDPs backbone resonance assignment are presented. The most distinctive feature of all described techniques is the employment of MOCCA-XY16 mixing sequences to obtain effective magnetization transfers between carbonyl carbon backbone nuclei. The proposed 4 and 5 dimensional experiments provide a high dispersion of obtained signals making them suitable for use...
[NMR paper] Longitudinal relaxation properties of (1)H(N) and (1)H(?) determined by direct-detected (13)C NMR experiments to study intrinsically disordered proteins (IDPs).
Longitudinal relaxation properties of (1)H(N) and (1)H(?) determined by direct-detected (13)C NMR experiments to study intrinsically disordered proteins (IDPs).
Longitudinal relaxation properties of (1)H(N) and (1)H(?) determined by direct-detected (13)C NMR experiments to study intrinsically disordered proteins (IDPs).
J Magn Reson. 2015 Feb 12;254:19-26
Authors: Hošek T, Gil-Caballero S, Pierattelli R, Brutscher B, Felli IC
Abstract
Intrinsically disordered proteins (IDPs) are functional proteins containing large...
nmrlearner
Journal club
0
03-17-2015 05:12 PM
Longitudinal relaxation properties of 1HN and 1H? determined by direct-detected 13C NMR experiments to study intrinsically disordered proteins (IDPs)
Longitudinal relaxation properties of 1HN and 1H? determined by direct-detected 13C NMR experiments to study intrinsically disordered proteins (IDPs)
Publication date: Available online 12 February 2015
Source:Journal of Magnetic Resonance</br>
Author(s): Tomáš Hošek , Sergi Gil-Caballero , Roberta Pierattelli , Bernhard Brutscher , Isabella C. Felli</br>
Intrinsically disordered proteins (IDPs) are functional proteins containing large fragments characterized by high local mobility. Bioinformatic studies have suggested that a significant fraction (more than 30%)...
nmrlearner
Journal club
0
02-12-2015 07:48 PM
Triple resonance-based 13 C α and 13 C β CEST experiments for studies of ms timescale dynamics in proteins
Triple resonance-based 13 C α and 13 C β CEST experiments for studies of ms timescale dynamics in proteins
Abstract
A pair of triple resonance based CEST pulse schemes are presented for measuring 13Cα and 13Cβ chemical shifts of sparsely populated and transiently formed conformers that are invisible to traditional NMR experiments. CEST profiles containing dips at resonance positions of 13Cα or 13Cβ spins of major (ground) and minor (excited) conformers are obtained in a pseudo 3rd dimension that is generated by quantifying modulations of cross...
nmrlearner
Journal club
0
10-28-2014 02:42 PM
New 13C-detected experiments for the assignment of intrinsically disordered proteins
New 13C-detected experiments for the assignment of intrinsically disordered proteins
Abstract
NMR assignment of intrinsically disordered proteins (IDPs) by conventional HN-detected methods is hampered by the small dispersion of the amide protons chemical shifts and exchange broadening of amide proton signals. Therefore several alternative assignment strategies have been proposed in the last years. Attempting to seize that dispersion of 13Câ?² and 15N chemical shifts holds even in IDPs, we recently proposed two 13C-detected experiments to directly...