BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-24-2019, 10:41 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Transient Incomplete Separation Facilitates Finding Accurate Equilibrium Dissociation Constant of Protein–Small Molecule Complex

Transient Incomplete Separation Facilitates Finding Accurate Equilibrium Dissociation Constant of Protein–Small Molecule Complex


Angewandte Chemie International Edition, Volume 0, Issue ja, -Not available-.

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Protein-Observed Fluorine NMR: A Bioorthogonal Approach for Small Molecule Discovery.
Protein-Observed Fluorine NMR: A Bioorthogonal Approach for Small Molecule Discovery. Protein-Observed Fluorine NMR: A Bioorthogonal Approach for Small Molecule Discovery. J Med Chem. 2015 Nov 24; Authors: Arntson KE, Pomerantz WC Abstract The 19F isotope is 100% naturally abundant and is the second most sensitive and stable NMR-active nucleus. Unlike the ubiquitous hydrogen atom, fluorine is nearly absent in biological systems, making it a unique bioorthogonal atom for probing molecular interactions in biology. Over 73...
nmrlearner Journal club 0 11-26-2015 12:13 AM
[NMR paper] TROSY NMR with a 52 kDa sugar transport protein and the binding of a small-molecule inhibitor.
TROSY NMR with a 52 kDa sugar transport protein and the binding of a small-molecule inhibitor. Related Articles TROSY NMR with a 52 kDa sugar transport protein and the binding of a small-molecule inhibitor. Mol Membr Biol. 2014 May 7; Authors: Kalverda AP, Gowdy J, Thompson GS, Homans SW, Henderson PJ, Patching SG Abstract Abstract Using the sugar transport protein, GalP, from Escherichia coli, which is a homologue of human GLUT transporters, we have overcome the challenges for achieving high-resolution - and -methyl-TROSY NMR...
nmrlearner Journal club 0 05-09-2014 07:01 PM
[NMR paper] Screening protein-small molecule interactions by NMR.
Screening protein-small molecule interactions by NMR. Related Articles Screening protein-small molecule interactions by NMR. Methods Mol Biol. 2013;1008:389-413 Authors: Davis B Abstract Nuclear magnetic resonance (NMR) is well suited to probing the interactions between ligands and macromolecular receptors. It is a truly label-free technique, requiring only the presence of atoms (usually (1)H or (19)F) which give rise to observable resonances on either the ligand or the receptor. A number of parameters associated with these resonances can...
nmrlearner Journal club 0 06-05-2013 06:53 PM
[CNS Yahoo group] How to add bond between protein residue and a small molecule in CNS
How to add bond between protein residue and a small molecule in CNS Dear All, I'm stuck in a step where in i need to connect a bond an amino acid residue and a small molecule in CNS Thank you. Joseph More...
nmrlearner News from other NMR forums 0 08-07-2011 01:35 AM
Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range
Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range Abstract The mechanism of signal transduction mediated by G protein-coupled receptors is a subject of intense research in pharmacological and structural biology. Ligand association to the receptor constitutes a critical event in the activation process. Solution-state NMR can be amenable to high-resolution structure determination of agonist molecules in their...
nmrlearner Journal club 0 06-25-2011 04:12 AM
[Question from NMRWiki Q&A forum] How can I calculate a carbon-proton coupling constant for a molecule?
How can I calculate a carbon-proton coupling constant for a molecule? I'm trying to explain a missing HMBC peak, and having a coupling constant less than 10 Hz would do that nicely. It's a formamidine derivative with a 3 bond correlation N=CHNC The C is a quaternary carbon in a benzene ring. Any help would be appreciated. Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 02-04-2011 07:12 PM
[NMR paper] NMR structure of a complex between MDM2 and a small molecule inhibitor.
NMR structure of a complex between MDM2 and a small molecule inhibitor. Related Articles NMR structure of a complex between MDM2 and a small molecule inhibitor. J Biomol NMR. 2004 Oct;30(2):163-73 Authors: Fry DC, Emerson SD, Palme S, Vu BT, Liu CM, Podlaski F MDM2 is a regulator of cell growth processes that acts by binding to the tumor suppressor protein p53 and ultimately restraining its activity. While inactivation of p53 by mutation is commonly observed in human cancers, a substantial percentage of tumors express wild type p53. In many of...
nmrlearner Journal club 0 11-24-2010 10:01 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:19 PM.


Map