BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-30-2011, 05:01 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR

Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR

Caroline Haupt, Rica Patzschke, Ulrich Weininger, Stefan Gro?ger, Michael Kovermann and Jochen Balbach



Journal of the American Chemical Society
DOI: 10.1021/ja2010048




Source: Journal of the American Chemical Society
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Transient enzyme-substrate recognition monitored by real-time NMR.
Transient enzyme-substrate recognition monitored by real-time NMR. Transient enzyme-substrate recognition monitored by real-time NMR. J Am Chem Soc. 2011 Jun 10; Authors: Haupt C, Patzschke R, Weininger U, Gröger S, Kovermann M, Balbach J Slow protein folding processes during which kinetic folding intermediates occur for an extended time can lead to aggregation and dysfunction in living cells. Therefore protein folding helpers have evolved, which prevent proteins from aggregation and/ or speed up folding processes. In this study we present the...
nmrlearner Journal club 0 06-15-2011 01:15 PM
Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR.
Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR. Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR. Nat Chem Biol. 2011 Mar 20; Authors: Ullrich SJ, Hellmich UA, Ullrich S, Glaubitz C The simultaneous observation of interdependent reactions within different phases as catalyzed by membrane-bound enzymes is still a challenging task. One such enzyme, the Escherichia coli integral membrane protein diacylglycerol kinase (DGK), is a key player in lipid regulation. It catalyzes the...
nmrlearner Journal club 0 03-23-2011 05:41 PM
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy Abstract It is shown that real-time 2D solid-state NMR can be used to obtain kinetic and structural information about the process of protein aggregation. In addition to the incorporation of kinetic information involving intermediate states, this approach can offer atom-specific resolution for all detectable species. The analysis was carried out using experimental data obtained during aggregation of the 10.4 kDa Crh protein, which has been shown to involve a partially unfolded intermediate...
nmrlearner Journal club 0 01-27-2011 04:31 AM
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy.
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy. Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy. J Biomol NMR. 2011 Jan 21; Authors: Etzkorn M, Böckmann A, Baldus M It is shown that real-time 2D solid-state NMR can be used to obtain kinetic and structural information about the process of protein aggregation. In addition to the incorporation of kinetic information involving intermediate states, this approach can offer atom-specific resolution for all...
nmrlearner Journal club 0 01-22-2011 01:52 PM
[NMR paper] Conformational changes in a photosensory LOV domain monitored by time-resolved NMR sp
Conformational changes in a photosensory LOV domain monitored by time-resolved NMR spectroscopy. Related Articles Conformational changes in a photosensory LOV domain monitored by time-resolved NMR spectroscopy. J Am Chem Soc. 2004 Mar 24;126(11):3390-1 Authors: Harper SM, Neil LC, Day IJ, Hore PJ, Gardner KH Phototropins are light-activated kinases from plants that utilize light-oxygen-voltage (LOV) domains as blue light photosensors. Illumination of these domains leads to the formation of a covalent linkage between the protein and an...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Folding of a beta-sheet protein monitored by real-time NMR spectroscopy.
Folding of a beta-sheet protein monitored by real-time NMR spectroscopy. Related Articles Folding of a beta-sheet protein monitored by real-time NMR spectroscopy. J Mol Biol. 2003 May 16;328(5):1161-71 Authors: Mizuguchi M, Kroon GJ, Wright PE, Dyson HJ At low ionic strength, apoplastocyanin forms an unfolded state under non-denaturing conditions. The refolding of this state is sufficiently slow to allow real-time NMR experiments to be performed. Folding of apoplastocyanin, initiated by the addition of salt and followed by real-time 2D 1H-15N...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Substrate recognition by the Lyn protein-tyrosine kinase. NMR structure of the immuno
Substrate recognition by the Lyn protein-tyrosine kinase. NMR structure of the immunoreceptor tyrosine-based activation motif signaling region of the B cell antigen receptor. Related Articles Substrate recognition by the Lyn protein-tyrosine kinase. NMR structure of the immunoreceptor tyrosine-based activation motif signaling region of the B cell antigen receptor. J Biol Chem. 2000 May 26;275(21):16174-82 Authors: Gaul BS, Harrison ML, Geahlen RL, Burton RA, Post CB The immunoreceptor tyrosine-based activation motif (ITAM) plays a central role...
nmrlearner Journal club 0 11-18-2010 09:15 PM
[NMR paper] Real-time NMR studies on a transient folding intermediate of barstar.
Real-time NMR studies on a transient folding intermediate of barstar. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Real-time NMR studies on a transient folding intermediate of barstar. Protein Sci. 1999 Jun;8(6):1286-91 Authors: Killick TR, Freund SM, Fersht AR The refolding of barstar, the intracellular...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:37 PM.


Map