Transient electrostatic interactions dominate the conformational equilibrium sampled by multi-domain splicing factor U2AF65: A combined NMR and SAXS study.
Related ArticlesTransient electrostatic interactions dominate the conformational equilibrium sampled by multi-domain splicing factor U2AF65: A combined NMR and SAXS study.
J Am Chem Soc. 2014 Apr 16;
Authors: Huang JR, Warner LR, Sanchez C, Gabel F, Madl T, Mackereth CD, Sattler M, Blackledge M
Abstract
Multi-domain proteins containing intrinsically disordered linkers exhibit large-scale dynamic modes that play key roles in a multitude of molecular recognition and signaling processes. Here we determine the conformational space sampled by the multi-domain splicing factor U2AF65 using complementary nuclear magnetic resonance spectroscopy and small angle scattering data. Available degrees of conformational freedom are initially stochastically sampled and experimental data then used to delineate the potential energy landscape in terms of statistical probability. The spatial distribution of U2AF65 conformations is found to be highly anisotropic, comprising significantly populated inter-domain contacts that appear to be electrostatic in origin. This hypothesis is supported by the reduction of signature PREs reporting on this interface with increasing salt concentration. The described spatial distribution reveals the complete spectrum of the unbound forms of U2AF65 that co-exist with the small percentage of a pre-formed RNA-bound domain arrangement required for polypyrimidine-tract recognition by conformational selection. The presence of a range of dynamically interconverting conformers may imply beneficial conformational entropy for unbound U2AF65. More generally, the proposed approach to describing conformational equilibria of multi-domain proteins can be further combined with other experimental data that are sensitive to domain dynamics.
PMID: 24734879 [PubMed - as supplied by publisher]
Segmental isotopic labeling of a 140 kDa dimeric multi-domain protein CheA from Escherichia coli by expressed protein ligation and protein trans-splicing
Segmental isotopic labeling of a 140 kDa dimeric multi-domain protein CheA from Escherichia coli by expressed protein ligation and protein trans-splicing
Abstract Segmental isotopic labeling is a powerful labeling tool to facilitate NMR studies of larger proteins by not only alleviating the signal overlap problem but also retaining features of uniform isotopic labeling. Although two approaches, expressed protein ligation (EPL) and protein trans-splicing (PTS), have been mainly used for segmental isotopic labeling, there has been no single example in which both approaches have been...
nmrlearner
Journal club
0
07-02-2012 06:18 AM
Analysis of non-uniformly sampled spectra with multi-dimensional decomposition
Analysis of non-uniformly sampled spectra with multi-dimensional decomposition
Publication year: 2011
Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 3</br>
Vladislav Yu. Orekhov, Victor A. Jaravine</br>
</br>
</br></br>
nmrlearner
Journal club
0
03-09-2012 09:16 AM
Narrowing the conformational space sampled by two-domain proteins with paramagnetic probes in both domains
Narrowing the conformational space sampled by two-domain proteins with paramagnetic probes in both domains
Abstract Calmodulin is a two-domain protein which in solution can adopt a variety of conformations upon reorientation of its domains. The maximum occurrence (MO) of a set of calmodulin conformations that are representative of the overall conformational space possibly sampled by the protein, has been calculated from the paramagnetism-based restraints. These restraints were measured after inclusion of a lanthanide binding tag in the C-terminal domain to supplement the data obtained...
nmrlearner
Journal club
0
08-13-2011 02:47 AM
A segmental labeling strategy for unambiguous determination of domainâ??domain interactions of large multi-domain proteins
A segmental labeling strategy for unambiguous determination of domainâ??domain interactions of large multi-domain proteins
Abstract NMR structural determination of large multi-domain proteins is a challenging task due to significant spectral overlap with a particular difficulty in unambiguous identification of domainâ??domain interactions. Segmental labeling is a NMR strategy that allows for isotopically labeling one domain and leaves the other domain unlabeled. This significantly simplifies spectral overlaps and allows for quick identification of domainâ??domain interaction. Here, a...
nmrlearner
Journal club
0
07-08-2011 07:01 PM
Insight into interactions of the von-Willebrand-factor-A-like domain 2 with the FNIII-like domain 9 of collagen VII by NMR and SPR.
Insight into interactions of the von-Willebrand-factor-A-like domain 2 with the FNIII-like domain 9 of collagen VII by NMR and SPR.
Insight into interactions of the von-Willebrand-factor-A-like domain 2 with the FNIII-like domain 9 of collagen VII by NMR and SPR.
FEBS Lett. 2011 May 9;
Authors: Leineweber S, Schönig S, Seeger K
Type VII collagen as component of anchoring fibrils plays an important role in skin architecture, however, no detailed structural information is available. Here, we describe the recombinant expression, isotope labeling, and...
nmrlearner
Journal club
0
05-17-2011 06:21 PM
Analysis of non-uniformly sampled spectra with Multi-Dimensional Decomposition
Analysis of non-uniformly sampled spectra with Multi-Dimensional Decomposition
Publication year: 2011
Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 24 February 2011</br>
Vladislav Yu., Orekhov , Victor A., Jaravine</br>
More...