Revealing Protein Structures in Solid-Phase Peptide Synthesis by 13C Solid-State NMR: Evidence of Excessive Misfolding for Alzheimer’s ?
Revealing Protein Structures in Solid-Phase Peptide Synthesis by 13C Solid-State NMR: Evidence of Excessive Misfolding for Alzheimer’s ?
Songlin Wang and Yoshitaka Ishii
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja212190z/aop/images/medium/ja-2011-12190z_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja212190z
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/6EE7uthrnLg
nmrlearner
Journal club
0
01-31-2012 08:34 PM
Spectroscopic solution: NMR accesses membrane protein structures
Spectroscopic solution: NMR accesses membrane protein structures
Membrane proteins mediate so much of the information flow between cells and their surroundings. Understanding their molecular structure will inevitably give scientists insights into function and form as well as providing targets for novel pharmaceuticals when these proteins go awry.
Source: Spectroscopynow.com
nmrlearner
General
0
10-03-2011 08:40 PM
NMR structures of the histidine-rich peptide LAH4 in micellar environments: membrane insertion, pH-dependent mode of antimicrobial action, and DNA transfection.
NMR structures of the histidine-rich peptide LAH4 in micellar environments: membrane insertion, pH-dependent mode of antimicrobial action, and DNA transfection.
NMR structures of the histidine-rich peptide LAH4 in micellar environments: membrane insertion, pH-dependent mode of antimicrobial action, and DNA transfection.
Biophys J. 2010 Oct 20;99(8):2507-15
Authors: Georgescu J, Munhoz VH, Bechinger B
The LAH4 family of histidine-rich peptides exhibits potent antimicrobial and DNA transfection activities, both of which require interactions...
nmrlearner
Journal club
0
02-02-2011 02:40 AM
Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations.
Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations.
Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations.
Eur Biophys J. 2011 Jan 28;
Authors: Grasnick D, Sternberg U, Strandberg E, Wadhwani P, Ulrich AS
To better understand peptide-induced membrane fusion at a molecular level, we set out to determine the structure of the fusogenic peptide FP23 from the HIV-1 protein gp41 when bound to a lipid bilayer. An established solid-state...
nmrlearner
Journal club
0
01-29-2011 12:35 PM
[NMR paper] Interaction of the fusogenic peptide B18 in its amyloid-state with lipid membranes st
Interaction of the fusogenic peptide B18 in its amyloid-state with lipid membranes studied by solid state NMR.
Related Articles Interaction of the fusogenic peptide B18 in its amyloid-state with lipid membranes studied by solid state NMR.
Chem Phys Lipids. 2004 Nov;132(1):65-77
Authors: Grage SL, Afonin S, Grüne M, Ulrich AS
The interaction of the fusogenic polypeptide segment "B18" from the fertilization protein binding with lipid membranes was investigated by solid state 2H and 31P NMR, and by differential scanning calorimetry. B18 is known...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
19F NMR analysis of the antimicrobial peptide PGLa bound to native cell membranes fro
19F NMR analysis of the antimicrobial peptide PGLa bound to native cell membranes from bacterial protoplasts and human erythrocytes.
Related Articles 19F NMR analysis of the antimicrobial peptide PGLa bound to native cell membranes from bacterial protoplasts and human erythrocytes.
J Am Chem Soc. 2010 Jul 7;132(26):8822-4
Authors: Ieronimo M, Afonin S, Koch K, Berditsch M, Wadhwani P, Ulrich AS
(19)F NMR is a unique tool to examine the structure of fluorine-labeled peptides in their native cellular environment, due to an exquisite sensitivity...
Investigation of the utility of selective methyl protonation for determination of membrane protein structures
Investigation of the utility of selective methyl protonation for determination of membrane protein structures
Steve C. C. Shih, Ileana Stoica and Natalie K. Goto
Journal of Biomolecular NMR; 2008; 42(1); pp 49-58
Abstract
Polytopic α-helical membrane proteins present one of the final frontiers for protein structural biology, with significant challenges causing severe under-representation in the protein structure databank. However, with the advent of hardware and methodology geared to the study of large molecular weight complexes, solution NMR is being increasingly considered as a tool...