BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-15-2015, 04:01 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Towards Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds.

Towards Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds.

Towards Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds.

J Phys Chem B. 2015 Aug 14;

Authors: Rorick A, Michael MA, Yang L, Zhang Y

Abstract
Oxygen is an important element in most biologically significant molecules and experimental solid-state (17)O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state (17)O NMR chemical shift tensor properties are still challenging in many cases and in particular each of the prior computational work is basically limited to one type of oxygen-containing systems. This work provides the first systematic study of the effects of geometry refinement, method and basis sets for metal and non-metal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups, X= H, C, N, P, and metal. The experimental range studied is 1455 ppm, a major part of the reported (17)O NMR chemical shifts in organic and organometallic compounds. A number of computational factors towards relatively general and accurate predictions of (17)O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied various kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient R(2) of 0.9880 and mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and R(2) of 0.9926 for all shift tensor properties. These results shall facilitate future computational studies of (17)O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help refinement and determination of active-site structures of some oxygen-containing substrate bound proteins.


PMID: 26274812 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules.
AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules. Related Articles AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules. J Biomol NMR. 2015 Aug 2; Authors: Swails J, Zhu T, He X, Case DA Abstract We evaluate the performance of the automated fragmentation quantum mechanics/molecular mechanics approach (AF-QM/MM) on the calculation of protein and nucleic acid NMR chemical shifts. The AF-QM/MM approach models solvent effects...
nmrlearner Journal club 0 08-04-2015 03:00 PM
AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules
AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules Abstract We evaluate the performance of the automated fragmentation quantum mechanics/molecular mechanics approach (AF-QM/MM) on the calculation of protein and nucleic acid NMR chemical shifts. The AF-QM/MM approach models solvent effects implicitly through a set of surface charges computed using the Poissonâ??Boltzmann equation, and it can also be combined with an explicit solvent model through the placement of water molecules in the first solvation...
nmrlearner Journal club 0 08-02-2015 07:10 AM
[NMR paper] Quantum calculation of protein NMR chemical shifts based on the automated fragmentation method.
Quantum calculation of protein NMR chemical shifts based on the automated fragmentation method. Related Articles Quantum calculation of protein NMR chemical shifts based on the automated fragmentation method. Adv Exp Med Biol. 2015;827:49-70 Authors: Zhu T, Zhang JZ, He X Abstract The performance of quantum mechanical methods on the calculation of protein NMR chemical shifts is reviewed based on the recently developed automatic fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach. By using the...
nmrlearner Journal club 0 11-14-2014 08:33 AM
[NMR paper] NMRDSP: An Accurate Prediction of Protein Shape Strings from NMR Chemical Shifts and Sequence Data.
NMRDSP: An Accurate Prediction of Protein Shape Strings from NMR Chemical Shifts and Sequence Data. Related Articles NMRDSP: An Accurate Prediction of Protein Shape Strings from NMR Chemical Shifts and Sequence Data. PLoS One. 2013;8(12):e83532 Authors: Mao W, Cong P, Wang Z, Lu L, Zhu Z, Li T Abstract Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are...
nmrlearner Journal club 0 01-01-2014 03:05 PM
[NMR paper] Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel ?-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation.
Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel ?-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.rsc.org-images-entities-char_z_RSClogo.gif Related Articles Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel ?-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation. Chem Commun (Camb). 2012 Nov 25;48(91):11199-201 ...
nmrlearner Journal club 0 03-30-2013 12:59 PM
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy Ivan V. Sergeyev, Loren A. Day, Amir Goldbourt and Ann E. McDermott http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2043062/aop/images/medium/ja-2011-043062_0007.gif Journal of the American Chemical Society DOI: 10.1021/ja2043062 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/EeKgo5vg1K0
nmrlearner Journal club 0 11-30-2011 10:45 PM
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy.
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy. Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy. J Am Chem Soc. 2011 Aug 22; Authors: Sergeyev IV, Day LA, Goldbourt A, McDermott AE Abstract Solid state NMR spectra, including dynamic nuclear polarization enhanced 400 MHz spectra acquired at 100K, as well as non-DNP spectra at a variety of field strengths and...
nmrlearner Journal club 0 08-23-2011 04:03 PM
Rapid, Accurate and Simple Model to Predict NMR Chemical Shifts for Biological Molecu
Rapid, Accurate and Simple Model to Predict NMR Chemical Shifts for Biological Molecules. Rapid, Accurate and Simple Model to Predict NMR Chemical Shifts for Biological Molecules. J Phys Chem B. 2010 Nov 18; Authors: Atieh Z, Aubert-Fre?con M, Allouche AR We present a new model to predict chemical shifts for biological molecules. It is simple, fast, and involves a limited number of parameters. It is particularly adapted to be used in molecular dynamics studies with a molecular mechanic potential. We test the model for polyamines, which are rather...
nmrlearner Journal club 0 11-20-2010 06:01 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:50 PM.


Map