Proteins are the building blocks of life. The shape of the protein determines its functionality. This understanding of the 3D structure of proteins has applications in study of diseases, medicine, body functions, and other aspects of life. Nuclear magnetic resonance (NMR) has been a powerful tool for researchers to get insight into the metabolome of cells, tissues, biofluids, secretions, and overall etiology of the disease state. Solid-state NMR (ssNMR) spectroscopy is used for samples that have...
[NMR paper] Spectral editing of alanine, serine, and threonine in uniformly labeled proteins based on frequency-selective homonuclear recoupling in solid-state NMR
Spectral editing of alanine, serine, and threonine in uniformly labeled proteins based on frequency-selective homonuclear recoupling in solid-state NMR
Spectral editing is crucial to simplify the crowded solid-state NMR spectra of proteins. New techniques are introduced to edit ^(13)C-^(13)C correlations of uniformly labeled proteins under moderate magic-angle spinning (MAS), based on our recent frequency-selective homonuclear recoupling sequences . The signals of alanine, serine, or threonine residues are selected out by selective ^(13)C?-^(13)C? double-quantum filtering (DQF). The...
...
nmrlearner
Journal club
0
04-23-2021 09:53 PM
Spectral editing of alanine, serine, and threonine in uniformly labeled proteins based on frequency-selective homonuclear recoupling in solid-state NMR
Spectral editing of alanine, serine, and threonine in uniformly labeled proteins based on frequency-selective homonuclear recoupling in solid-state NMR
Abstract
Spectral editing is crucial to simplify the crowded solid-state NMR spectra of proteins. New techniques are introduced to edit 13C-13C correlations of uniformly labeled proteins under moderate magic-angle spinning (MAS), based on our recent frequency-selective homonuclear recoupling sequences . The signals of alanine, serine, or threonine residues are selected out by selective 13Cα-13Cβ...
nmrlearner
Journal club
0
04-23-2021 07:01 AM
[NMR paper] MAS solid state NMR of proteins: simultaneous (15)N- (13)CA and (15)N- (13)CO dipolar recoupling via low-power symmetry-based RF pulse schemes.
MAS solid state NMR of proteins: simultaneous (15)N- (13)CA and (15)N- (13)CO dipolar recoupling via low-power symmetry-based RF pulse schemes.
MAS solid state NMR of proteins: simultaneous (15)N- (13)CA and (15)N- (13)CO dipolar recoupling via low-power symmetry-based RF pulse schemes.
J Biomol NMR. 2015 Feb 25;
Authors: Herbst C, Bellstedt P, Görlach M, Ramachandran R
Abstract
The generation of efficient RN n (?)s,(?)k symmetry-based low-power RF pulse schemes for simultaneous (15)N-(13)CA and (15)N-(13)CO dipolar recoupling...
nmrlearner
Journal club
0
02-26-2015 11:11 PM
MAS solid state NMR of proteins: simultaneous 15 Nâ?? 13 CA and 15 Nâ?? 13 CO dipolar recoupling via low-power symmetry-based RF pulse schemes
MAS solid state NMR of proteins: simultaneous 15 Nâ?? 13 CA and 15 Nâ?? 13 CO dipolar recoupling via low-power symmetry-based RF pulse schemes
Abstract
The generation of efficient RN n νs,νk symmetry-based low-power RF pulse schemes for simultaneous 15Nâ??13CA and 15Nâ??13CO dipolar recoupling is demonstrated. The method involves mixing schemes employing phase and amplitude-modulated dual band-selective 180° pulses as basic â??Râ?? element and tailoring of the RF field-modulation...
nmrlearner
Journal club
0
02-25-2015 05:56 PM
[NMR paper] Solid-State NMR-Based Approaches for Supramolecular Structure Elucidation.
Solid-State NMR-Based Approaches for Supramolecular Structure Elucidation.
Related Articles Solid-State NMR-Based Approaches for Supramolecular Structure Elucidation.
Acc Chem Res. 2013 Apr 15;
Authors: Weingarth M, Baldus M
Abstract
Supramolecular chemistry provides structural and conformational information about complexes formed from multiple molecules. While the molecule is held together by strong intramolecular contacts like covalent bonds, supramolecular structures can be further stabilized by weaker or transient intermolecular...
nmrlearner
Journal club
0
04-17-2013 08:15 PM
Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra
Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra
Abstract We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH...
nmrlearner
Journal club
0
11-29-2012 03:14 AM
Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy.
Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy.
Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy.
J Am Chem Soc. 2011 Mar 24;
Authors: Linser R, Bardiaux B, Higman V, Fink U, Reif B
Magic-angle spinning (MAS) solid-state NMR becomes an increasingly important tool for the determination of structures of membrane...
nmrlearner
Journal club
0
03-26-2011 07:00 PM
Structure Calculation from Unambiguous Long-Range Amide and Methyl 1H-1H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy
Structure Calculation from Unambiguous Long-Range Amide and Methyl 1H-1H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy
Rasmus Linser, Benjamin Bardiaux, Victoria Higman, Uwe Fink and Bernd Reif
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja110222h/aop/images/medium/ja-2010-10222h_0004.gif
Journal of the American Chemical Society
DOI: 10.1021/ja110222h
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/Dh0EBf8PwcY