The time-zero HSQC method improves the linear free energy relationship of a polypeptide chain through the accurate measurement of residue-specific equilibrium constants
The time-zero HSQC method improves the linear free energy relationship of a polypeptide chain through the accurate measurement of residue-specific equilibrium constants
EXSY (exchange spectroscopy) NMR provides the residue-specific equilibrium constants, K, and residue-specific kinetic rate constants, k, of a polypeptide chain in a two-state exchange in the slow exchange regime. A linear free energy relationship (LFER) discovered in a log k versus log K plot is considered to be a physicochemical basis for smooth folding and conformational changes of protein molecules. For accurate determination of the thermodynamic and kinetic parameters, the measurement bias arising from state-specific differences in the R1 and R2 relaxation rates of 1H and other nuclei in HSQC and EXSY experiments must be minimized. Here, we showed that the time-zero HSQC acquisition scheme (HSQC0) is effective for this purpose, in combination with a special analytical method (Î* analysis) for EXSY. As an example, we applied the HSQC0â??+â??Î* method to the two-state exchange of nukacin ISK-1 in an aqueous solution. Nukacin ISK-1 is a 27-residue lantibiotic peptide containing three mono-sulfide linkages. The resultant bias-free residue-based LFER provided valuable insights into the transition state of the topological interconversion of nukacin ISK-1. We found that two amino acid residues were exceptions in the residue-based LFER relationship. We inferred that the two residues could adopt special conformations in the transition state, to allow the threading of some side chains through a ring structure formed by one of the mono-sulfide linkages. In this context, the two residues are a useful target for the manipulation of the physicochemical properties and biological activities of nukacin ISK-1.
[NMR paper] Residue-Specific Kinetic Insights into the Transition State in Slow Polypeptide Topological Isomerization by NMR Exchange Spectroscopy
Residue-Specific Kinetic Insights into the Transition State in Slow Polypeptide Topological Isomerization by NMR Exchange Spectroscopy
The characterization of the transition state is a central issue in biophysical studies of protein folding. NMR is a multiprobe measurement technique that provides residue-specific information. Here, we used exchange spectroscopy to characterize the transition state of the two-state slow topological isomerization of a 27-residue lantibiotic peptide. The exchange kinetic rates varied on a per-residue basis, indicating the reduced kinetic cooperativity of the...
nmrlearner
Journal club
0
10-26-2021 01:10 PM
[NMR paper] Mapping the energy landscape of protein-ligand binding via linear free energy relationships determined by protein NMR relaxation dispersion
Mapping the energy landscape of protein-ligand binding via linear free energy relationships determined by protein NMR relaxation dispersion
Biochemical signaling is mediated by complexes between macromolecular receptors and their ligands, with the duration of the signal being directly related to the lifetime of the ligand-receptor complex. In the field of drug design, the recognition that drug efficacy in vivo depends on the lifetime of the drug-protein complex has spawned the concept of designing drugs with particular binding kinetics. To advance this field it is critical to investigate...
nmrlearner
Journal club
0
08-31-2021 10:53 AM
[NMR paper] Unified and isomer-specific NMR metabolomics database for the accurate analysis of (13)C-(1)H HSQC spectra.
Unified and isomer-specific NMR metabolomics database for the accurate analysis of (13)C-(1)H HSQC spectra.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.ncbi.nlm.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Unified and isomer-specific NMR metabolomics database for the accurate analysis of (13)C-(1)H HSQC spectra.
ACS Chem Biol. 2015 Feb 20;10(2):452-9
Authors: Bingol K, Li DW, Bruschweiler-Li...
nmrlearner
Journal club
0
01-16-2016 05:20 PM
[NMR paper] Measurement of State-Specific Association Constants in Allosteric Sensors through Molecular Stapling and NMR.
Measurement of State-Specific Association Constants in Allosteric Sensors through Molecular Stapling and NMR.
Related Articles Measurement of State-Specific Association Constants in Allosteric Sensors through Molecular Stapling and NMR.
J Am Chem Soc. 2015 Aug 6;
Authors: Moleschi KJ, Akimoto M, Melacini G
Abstract
Allostery is a ubiquitous mechanism to control biological function and arises from the coupling of inhibitory and binding equilibria. The extent of coupling reflects the inactive vs. active state selectivity of the...
Time-shared HSQC-NOESY for accurate distance constraints measured at high-field in 15N-13C-ILV methyl labeled proteins
Time-shared HSQC-NOESY for accurate distance constraints measured at high-field in 15N-13C-ILV methyl labeled proteins
Abstract We present a time-shared 3D HSQC-NOESY experiment that enables one to simultaneously record 13C- and 15N-dispersed spectra in Ile, Leu and Val (ILV) methyl-labeled samples. This experiment is designed to delineate the two spectra which would otherwise overlap with one another when acquired together. These spectra display nOe correlations in the detected proton dimension, i.e. with maximum resolution. This is in contrast to NOESY-HSQC types of experiments that...