BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-09-2011, 12:46 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Time-shared HSQC-NOESY for accurate distance constraints measured at high-field in 15N-13C-ILV methyl labeled proteins

Time-shared HSQC-NOESY for accurate distance constraints measured at high-field in 15N-13C-ILV methyl labeled proteins


Abstract We present a time-shared 3D HSQC-NOESY experiment that enables one to simultaneously record 13C- and 15N-dispersed spectra in Ile, Leu and Val (ILV) methyl-labeled samples. This experiment is designed to delineate the two spectra which would otherwise overlap with one another when acquired together. These spectra display nOe correlations in the detected proton dimension, i.e. with maximum resolution. This is in contrast to NOESY-HSQC types of experiments that provide cross-peaks in the indirect dimension with low resolution due to limits in experimental time. The technique is particularly advantageous at high field where even longer experimental times would be required for comparable resolution in NOESY-HSQC experiments. The method is demonstrated at 900 MHz and at 750 MHz on 37 and 31 kDa proteins, respectively. The resolution and time saving provided in this experiment was crucial for solving the structures of these two proteins.
  • Content Type Journal Article
  • Pages 311-318
  • DOI 10.1007/s10858-009-9372-5
  • Authors
    • Dominique P. Frueh, Harvard Medical School Department of Biological Chemistry and Molecular Pharmacology 240 Longwood Avenue Boston MA 02115 USA
    • Alison Leed, Harvard Medical School Department of Biological Chemistry and Molecular Pharmacology 240 Longwood Avenue Boston MA 02115 USA
    • Haribabu Arthanari, Harvard Medical School Department of Biological Chemistry and Molecular Pharmacology 240 Longwood Avenue Boston MA 02115 USA
    • Alexander Koglin, Harvard Medical School Department of Biological Chemistry and Molecular Pharmacology 240 Longwood Avenue Boston MA 02115 USA
    • Christopher T. Walsh, Harvard Medical School Department of Biological Chemistry and Molecular Pharmacology 240 Longwood Avenue Boston MA 02115 USA
    • Gerhard Wagner, Harvard Medical School Department of Biological Chemistry and Molecular Pharmacology 240 Longwood Avenue Boston MA 02115 USA

Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR Sparky Yahoo group] R: [nmr_sparky] Re: distance constraints from NOESY crosspeaks
R: Re: distance constraints from NOESY crosspeaks A single spectrum at 300 ms contains a lot of spin diffusion. It's good to assign DNA/RNA not for constraints. Try to use something like 50 ms instead. Marco More...
nmrlearner News from other NMR forums 0 02-13-2012 02:34 AM
[NMR Sparky Yahoo group] Re: distance constraints from NOESY crosspeaks
Re: distance constraints from NOESY crosspeaks No, i have only a spectrum with a mixing time of 300ms. More...
nmrlearner News from other NMR forums 0 02-13-2012 02:34 AM
[NMR Sparky Yahoo group] Re: distance constraints from NOESY crosspeaks
Re: distance constraints from NOESY crosspeaks Did you do the build up with different mixing time?Jay From: jennig148 To: nmr_sparky@yahoogroups.com Sent: Friday, February 10, More...
nmrlearner News from other NMR forums 0 02-10-2012 09:28 PM
[NMR Sparky Yahoo group] distance constraints from NOESY crosspeaks
distance constraints from NOESY crosspeaks Hello users, I have a NOESY spectrum of a DNA/RNA strand. I try to get the distance constraints by integration of the NOESY crosspeaks and then converting the More...
nmrlearner News from other NMR forums 0 02-10-2012 09:28 PM
High-resolution NMR field-cycling device for full-range relaxation and structural studies of biopolymers on a shared commercial instrument
High-resolution NMR field-cycling device for full-range relaxation and structural studies of biopolymers on a shared commercial instrument Abstract Improvements are described in a shuttling field-cycling device (Redfield in Magn Reson Chem 41:753â??768, 2003), designed to allow widespread access to this useful technique by configuring it as a removable module to a commercial 500 MHz NMR instrument. The main improvements described here, leading to greater versatility, high reliability and simple construction, include: shuttling provided by a linear motor driven by an integrated-control...
nmrlearner Journal club 0 12-31-2011 10:40 AM
Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methylâ??methyl nuclear overhauser enhancement spectroscopy
Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methylâ??methyl nuclear overhauser enhancement spectroscopy Abstract Methyl-transverse relaxation optimized spectroscopy is rapidly becoming the preferred NMR technique for probing structure and dynamics of very large proteins up to ~1 MDa in molecular size. Data interpretation, however, necessitates assignment of methyl groups which still presents a very challenging and time-consuming process. Here we demonstrate that, in combination with a known 3D structure, paramagnetic...
nmrlearner Journal club 0 09-26-2011 06:42 AM
[NMR paper] Hydrodynamic radii of native and denatured proteins measured by pulse field gradient
Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Related Articles Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry. 1999 Dec 14;38(50):16424-31 Authors: Wilkins DK, Grimshaw SB, Receveur V, Dobson CM, Jones JA, Smith LJ Pulse field gradient NMR methods have been used to determine the effective hydrodynamic radii of a range of native and nonnative protein conformations. From these experimental data, empirical relationships...
nmrlearner Journal club 0 11-18-2010 08:31 PM
Simultaneous detection of amide and methyl correlations using a time shared NMR experiment: application to binding epitope mapping
Simultaneous detection of amide and methyl correlations using a time shared NMR experiment: application to binding epitope mapping Peter Würtz, Olli Aitio, Maarit Hellman and Perttu Permi Journal of Biomolecular NMR; 2007; 39(2) pp 97 - 105 Abstract: Simultaneous recording of different NMR parameters is an efficient way to reduce the overall experimental time and speed up structural studies of biological macromolecules. This can especially be beneficial in the case of fast NMR-based drug screening applications or for collecting NOE restraints, where prohibitively long data collection...
stewart Journal club 0 08-05-2008 01:41 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:24 AM.


Map