BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-24-2022, 02:40 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Time-resolved solid state NMR of biomolecular processes with millisecond time resolution

Time-resolved solid state NMR of biomolecular processes with millisecond time resolution

We review recent efforts to develop and apply an experimental approach to the structural characterization of transient intermediate states in biomolecular processes that involve large changes in molecular conformation or assembly state. This approach depends on solid state nuclear magnetic resonance (ssNMR) measurements that are performed at very low temperatures, typically 25-30 K, with signal enhancements from dynamic nuclear polarization (DNP). This approach also involves novel technology for...

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[ASAP] Millisecond Time-Resolved Solid-State NMR Initiated by Rapid Inverse Temperature Jumps
Millisecond Time-Resolved Solid-State NMR Initiated by Rapid Inverse Temperature Jumps C. Blake Wilson and Robert Tycko https://pubs.acs.org/cms/10.1021/jacs.2c02704/asset/images/medium/ja2c02704_0006.gif Journal of the American Chemical Society DOI: 10.1021/jacs.2c02704
nmrlearner Journal club 0 05-27-2022 07:04 AM
Real-time tracking of protein unfolding with time-resolved x-ray solution scattering - Physics Today
Real-time tracking of protein unfolding with time-resolved x-ray solution scattering - Physics Today Real-time tracking of protein unfolding with time-resolved x-ray solution scattering Physics Today Read here
nmrlearner Online News 0 07-03-2021 08:12 PM
[ASAP] Millisecond Time-Resolved Solid-State NMR Reveals a Two-Stage Molecular Mechanism for Formation of Complexes between Calmodulin and a Target Peptide from Myosin Light Chain Kinase
Millisecond Time-Resolved Solid-State NMR Reveals a Two-Stage Molecular Mechanism for Formation of Complexes between Calmodulin and a Target Peptide from Myosin Light Chain Kinase Jaekyun Jeon, Wai-Ming Yau, and Robert Tycko https://pubs.acs.org/na101/home/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.0c11156/20201207/images/medium/ja0c11156_0007.gif Journal of the American Chemical Society DOI: 10.1021/jacs.0c11156 http://feeds.feedburner.com/~r/acs/jacsat/~4/pGPDzdJltQs
nmrlearner Journal club 0 12-08-2020 01:36 PM
[NMR paper] Millisecond Time-Resolved Solid-State NMR Reveals a Two-Stage Molecular Mechanism for Formation of Complexes between Calmodulin and a Target Peptide from Myosin Light Chain Kinase.
Millisecond Time-Resolved Solid-State NMR Reveals a Two-Stage Molecular Mechanism for Formation of Complexes between Calmodulin and a Target Peptide from Myosin Light Chain Kinase. Related Articles Millisecond Time-Resolved Solid-State NMR Reveals a Two-Stage Molecular Mechanism for Formation of Complexes between Calmodulin and a Target Peptide from Myosin Light Chain Kinase. J Am Chem Soc. 2020 Dec 07;: Authors: Jeon J, Yau WM, Tycko R Abstract Calmodulin (CaM) mediates a wide range of biological responses to changes in...
nmrlearner Journal club 0 12-08-2020 01:36 PM
[NMR paper] Millisecond Time Resolved Photo-CIDNP NMR Reveals a Non-Native Folding Intermediate on the Ion-Induced Refolding Pathway of Bovine ?-Lactalbumin.
Millisecond Time Resolved Photo-CIDNP NMR Reveals a Non-Native Folding Intermediate on the Ion-Induced Refolding Pathway of Bovine ?-Lactalbumin. Related Articles Millisecond Time Resolved Photo-CIDNP NMR Reveals a Non-Native Folding Intermediate on the Ion-Induced Refolding Pathway of Bovine ?-Lactalbumin. Angew Chem Int Ed Engl. 2001 Nov 19;40(22):4248-4251 Authors: Wirmer J, Kühn T, Schwalbe H Abstract Aspects of the structure of the intermediate populated after 200 ms in the Ca2+ -induced refolding of ?-lactalbumin have been...
nmrlearner Journal club 0 05-03-2018 06:46 PM
Journal Highlight: 'NMR Crystallization': in-situ NMR techniques for time-resolved monitoring of crystallization processes
Journal Highlight: 'NMR Crystallization': in-situ NMR techniques for time-resolved monitoring of crystallization processes http://www.spectroscopynow.com/common/images/thumbnails/15b331a8faa.jpgAn overview of the range of NMR strategies currently available for in-situ studies of crystallization processes is presented, with examples of applications that highlight their potential to deepen our understanding of crystallization phenomena. Read the rest at Spectroscopynow.com
nmrlearner General 0 04-03-2017 05:37 PM
[NMR paper] Hydrogen bond strength in membrane proteins probed by time-resolved (1)H-detected solid-state NMR and MD simulations.
Hydrogen bond strength in membrane proteins probed by time-resolved (1)H-detected solid-state NMR and MD simulations. Related Articles Hydrogen bond strength in membrane proteins probed by time-resolved (1)H-detected solid-state NMR and MD simulations. Solid State Nucl Magn Reson. 2017 Mar 18;: Authors: Medeiros-Silva J, Jekhmane S, Baldus M, Weingarth M Abstract (1)H-detected solid-state NMR in combination with (1)H/(2)D exchange steps allows for the direct identification of very strong hydrogen bonds in membrane proteins....
nmrlearner Journal club 0 03-28-2017 03:06 PM
Hydrogen bond strength in membrane proteins by time-resolved 1H-detected solid-state NMR and MD simulations
Hydrogen bond strength in membrane proteins by time-resolved 1H-detected solid-state NMR and MD simulations Publication date: Available online 18 March 2017 Source:Solid State Nuclear Magnetic Resonance</br> Author(s): João Medeiros-Silva, Shehrazade Jekhmane, Marc Baldus, Markus Weingarth</br> 1H-detected solid-state NMR in combination with 1H/2D exchange steps allows for the direct identification of very strong hydrogen bonds in membrane proteins. On the example of the membrane-embedded potassium channel KcsA, we quantify the longevity of such very strong...
nmrlearner Journal club 0 03-19-2017 07:03 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:33 PM.


Map