Recent advances in rapid mixing and freeze quenching have opened the path for time-resolved electron paramagnetic resonance (EPR)-based double electron-electron resonance (DEER) and solid-state NMR of protein-substrate interactions. DEER, in conjunction with phase memory time filtering to quantitatively extract species populations, permits monitoring time-dependent probability distance distributions between pairs of spin labels, while solid-state NMR provides quantitative residue-specific...
Time-resolved DEER EPR and solid-state NMR afford kinetic and structural elucidation of substrate binding to Ca2+-ligated calmodulin [Chemistry]
Time-resolved DEER EPR and solid-state NMR afford kinetic and structural elucidation of substrate binding to Ca2+-ligated calmodulin
Thomas Schmidt, Jaekyun Jeon, Wai-Ming Yau, Charles D. Schwieters, Robert Tycko, G. Marius Clore...
Date: 2022-02-01
Recent advances in rapid mixing and freeze quenching have opened the path for time-resolved electron paramagnetic resonance (EPR)-based double electron-electron resonance (DEER) and solid-state NMR of protein–substrate interactions. DEER, in conjunction with phase memory time filtering to quantitatively extract species populations, permits...
[NMR paper] Millisecond Time-Resolved Solid-State NMR Reveals a Two-Stage Molecular Mechanism for Formation of Complexes between Calmodulin and a Target Peptide from Myosin Light Chain Kinase.
Millisecond Time-Resolved Solid-State NMR Reveals a Two-Stage Molecular Mechanism for Formation of Complexes between Calmodulin and a Target Peptide from Myosin Light Chain Kinase.
Related Articles Millisecond Time-Resolved Solid-State NMR Reveals a Two-Stage Molecular Mechanism for Formation of Complexes between Calmodulin and a Target Peptide from Myosin Light Chain Kinase.
J Am Chem Soc. 2020 Dec 07;:
Authors: Jeon J, Yau WM, Tycko R
Abstract
Calmodulin (CaM) mediates a wide range of biological responses to changes in...
nmrlearner
Journal club
0
12-08-2020 01:36 PM
[ASAP] Structural Elucidation of Peptide Binding to KLHL-12, a Substrate Specific Adapter Protein in a Cul3-Ring E3 Ligase Complex
Structural Elucidation of Peptide Binding to KLHL-12, a Substrate Specific Adapter Protein in a Cul3-Ring E3 Ligase Complex
https://pubs.acs.org/na101/home/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.9b01073/20200216/images/medium/bi9b01073_0004.gif
Biochemistry
DOI: 10.1021/acs.biochem.9b01073
http://feeds.feedburner.com/~r/acs/bichaw/~4/9uJdixEmET4
More...
nmrlearner
Journal club
0
02-29-2020 09:52 PM
[NMR paper] Hydrogen bond strength in membrane proteins probed by time-resolved (1)H-detected solid-state NMR and MD simulations.
Hydrogen bond strength in membrane proteins probed by time-resolved (1)H-detected solid-state NMR and MD simulations.
Related Articles Hydrogen bond strength in membrane proteins probed by time-resolved (1)H-detected solid-state NMR and MD simulations.
Solid State Nucl Magn Reson. 2017 Mar 18;:
Authors: Medeiros-Silva J, Jekhmane S, Baldus M, Weingarth M
Abstract
(1)H-detected solid-state NMR in combination with (1)H/(2)D exchange steps allows for the direct identification of very strong hydrogen bonds in membrane proteins....
nmrlearner
Journal club
0
03-28-2017 03:06 PM
Hydrogen bond strength in membrane proteins by time-resolved 1H-detected solid-state NMR and MD simulations
Hydrogen bond strength in membrane proteins by time-resolved 1H-detected solid-state NMR and MD simulations
Publication date: Available online 18 March 2017
Source:Solid State Nuclear Magnetic Resonance</br>
Author(s): João Medeiros-Silva, Shehrazade Jekhmane, Marc Baldus, Markus Weingarth</br>
1H-detected solid-state NMR in combination with 1H/2D exchange steps allows for the direct identification of very strong hydrogen bonds in membrane proteins. On the example of the membrane-embedded potassium channel KcsA, we quantify the longevity of such very strong...
nmrlearner
Journal club
0
03-19-2017 07:03 AM
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy
Abstract It is shown that real-time 2D solid-state NMR can be used to obtain kinetic and structural information about the process of protein aggregation. In addition to the incorporation of kinetic information involving intermediate states, this approach can offer atom-specific resolution for all detectable species. The analysis was carried out using experimental data obtained during aggregation of the 10.4 kDa Crh protein, which has been shown to involve a partially unfolded intermediate...
nmrlearner
Journal club
0
01-27-2011 04:31 AM
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy.
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy.
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy.
J Biomol NMR. 2011 Jan 21;
Authors: Etzkorn M, Böckmann A, Baldus M
It is shown that real-time 2D solid-state NMR can be used to obtain kinetic and structural information about the process of protein aggregation. In addition to the incorporation of kinetic information involving intermediate states, this approach can offer atom-specific resolution for all...