[NMR paper] Three-Dimensional Structure of CAP-Gly Domain of Mammalian Dynactin Determined by Magic Angle Spinning NMR Spectroscopy: Conformational Plasticity and Interactions with End Binding Protein EB1.
Three-Dimensional Structure of CAP-Gly Domain of Mammalian Dynactin Determined by Magic Angle Spinning NMR Spectroscopy: Conformational Plasticity and Interactions with End Binding Protein EB1.
Related ArticlesThree-Dimensional Structure of CAP-Gly Domain of Mammalian Dynactin Determined by Magic Angle Spinning NMR Spectroscopy: Conformational Plasticity and Interactions with End Binding Protein EB1.
J Mol Biol. 2013 May 3;
Authors: Yan S, Hou G, Schwieters CD, Ahmed S, Williams JC, Polenova T
Abstract
Microtubules (MTs) and their associated proteins (MAPs) play important roles in vesicle and organelle transport, cell motility and cell division. Perturbation of these processes by mutation typically gives rise to severe pathological conditions. In our efforts to obtain atomic information on MAP/MT interactions with the goal to understand mechanisms that might potentially assist in the development of treatments for these diseases, we have determined the 3D structure of CAP-Gly domain of mammalian dynactin by MAS NMR spectroscopy. We observe two conformations in the ?2 strand encompassing residues T43-V44-A45, residues that are adjacent to the disease associated mutation, G59S. Upon binding of CAP-Gly to microtubule plus-end tracking protein EB1, the CAP-Gly shifts to a single conformer. We find extensive chemical shift perturbations in several stretches of residues of CAP-Gly upon binding to EB1, from which we define accurately the CAP-Gly/EB1 binding interface. We also observe that the loop regions may exhibit unique flexibility, especially in the GKNDG motif, which participates in the microtubule binding. This study in conjunction with our previous reports suggests that conformational plasticity is an intrinsic property of CAP-Gly likely due to its unusually high loop content and may be required for its biological functions.
PMID: 23648839 [PubMed - as supplied by publisher]
[NMR paper] Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy.
Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy.
Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy.
Acc Chem Res. 2013 Feb 13;
Authors: Yan S, Suiter CL, Hou G, Zhang H, Polenova T
Abstract
In living organisms, biological molecules often organize into multicomponent complexes. Such assemblies consist of various proteins and carry out essential functions, ranging from cell division, transport, and energy transduction to catalysis, signaling, and viral...
nmrlearner
Journal club
0
02-14-2013 02:37 PM
Solid-state magic-angle spinning NMR of membrane proteins and protein–ligand interactions
Solid-state magic-angle spinning NMR of membrane proteins and protein–ligand interactions
April 2012
Publication year: 2012
Source:European Journal of Cell Biology, Volume 91, Issue 4</br>
</br>
Structural biology is developing into a universal tool for visualizing biological processes in space and time at atomic resolution. The field has been built by established methodology like X-ray crystallography, electron microscopy and solution NMR and is now incorporating new techniques, such as small-angle X-ray scattering, electron tomography, magic-angle-spinning solid-state...
nmrlearner
Journal club
0
02-03-2013 10:13 AM
Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination
Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination
Abstract Several techniques for spectral editing of 2D 13Câ??13C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide Nâ??CO peaks through 13Câ??15N dipolar dephasing. The sidechain methine (CH) signals of valine,...
nmrlearner
Journal club
0
10-13-2012 04:42 AM
Structure and Interactions of Plant Cell-Wall Polysaccharides by Two- and Three-Dimensional Magic-Angle-Spinning Solid-State NMR
Structure and Interactions of Plant Cell-Wall Polysaccharides by Two- and Three-Dimensional Magic-Angle-Spinning Solid-State NMR
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi101795q/aop/images/medium/bi-2010-01795q_0008.gif
Biochemistry
DOI: 10.1021/bi101795q
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/9XLFFfb1pRU
More...
nmrlearner
Journal club
0
01-21-2011 03:31 AM
[NMR paper] Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Related Articles Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
J Am Chem Soc. 2005 Sep 21;127(37):12965-74
Authors: Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M
It is shown that molecular structure and dynamics of a uniformly labeled membrane protein can be studied under magic-angle-spinning conditions. For this purpose, dipolar recoupling experiments...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis.
Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis.
Related Articles Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis.
J Am Chem Soc. 2005 Sep 7;127(35):12291-305
Authors: Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM
Magic-angle spinning...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscop
Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy.
Related Articles Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy.
Nature. 2002 Nov 7;420(6911):98-102
Authors: Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H
The determination of a representative set of protein structures is a chief aim in structural genomics. Solid-state NMR may have a crucial role in structural investigations of those proteins that do not easily form crystals or are not...