Related ArticlesThermodynamic and solution state NMR characterization of the binding of secondary and conjugated bile acids to STARD5.
Biochim Biophys Acta. 2013 Jul 16;
Authors: Létourneau D, Lorin A, Lefebvre A, Cabana J, Lavigne P, Lehoux JG
Abstract
STARD5 is a member of the STARD4 sub-family of START domain containing proteins specialized in the non-vesicular transport of lipids and sterols. We recently reported that STARD5 binds primary bile acids. Herein, we report on the biophysical and structural characterization of the binding of secondary and conjugated bile acids by STARD5 at physiological concentrations. We found that the absence of the 7?-OH group and its epimerization increase the affinity of secondary bile acids for STARD5. According to NMR titration and molecular modeling, the affinity depends mainly on the number and positions of the steroid ring hydroxyl groups and to a lesser extent on the presence or type of bile acid side-chain conjugation. Primary and secondary bile acids have different binding modes and display different positioning within the STARD5 binding pocket. The relative STARD5 affinity for the different bile acids studied is: DCA>LCA> CDCA>GDCA>TDCA>CA>UDCA. TCA and GCA do not bind significantly to STARD5. The impact of the ligands chemical structure on the thermodynamics of binding is discussed. The discovery of these new ligands suggests that STARD5 is involved in the cellular response elicited by bile acids and offers many entry points to decipher its physiological role.
PMID: 23872533 [PubMed - as supplied by publisher]
[NMR paper] STARD5 specific ligand binding: Comparison with STARD1 and STARD4 subfamilies.
STARD5 specific ligand binding: Comparison with STARD1 and STARD4 subfamilies.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles STARD5 specific ligand binding: Comparison with STARD1 and STARD4 subfamilies.
Mol Cell Endocrinol. 2013 Jan 19;
Authors: Létourneau D, Lefebvre A, Lavigne P, Lehoux JG
Abstract
We present herein a review of our recent results on the characterization of the binding sites of STARD1, STARD5 and STARD6 using NMR and other biophysical...
nmrlearner
Journal club
0
02-03-2013 10:19 AM
VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy
VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy
Abstract Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR...
nmrlearner
Journal club
0
12-22-2011 06:50 AM
Solution-state NMR structure and biophysical characterization of zinc-substituted rubredoxin B (Rv3250c) from Mycobacterium tuberculosis.
Solution-state NMR structure and biophysical characterization of zinc-substituted rubredoxin B (Rv3250c) from Mycobacterium tuberculosis.
Solution-state NMR structure and biophysical characterization of zinc-substituted rubredoxin B (Rv3250c) from Mycobacterium tuberculosis.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Sep 1;67(Pt 9):1148-53
Authors: Buchko GW, Hewitt SN, Napuli AJ, Van Voorhis WC, Myler PJ
Abstract
Owing to the evolution of multi-drug-resistant and extremely drug-resistant Mycobacterium tuberculosis strains,...
nmrlearner
Journal club
0
09-10-2011 06:51 PM
Thermodynamic and NMR analysis of inhibitor binding to dihydrofolate reductase.
Thermodynamic and NMR analysis of inhibitor binding to dihydrofolate reductase.
Thermodynamic and NMR analysis of inhibitor binding to dihydrofolate reductase.
Bioorg Med Chem. 2010 Dec 15;18(24):8485-92
Authors: Batruch I, Javasky E, Brown ED, Organ MG, Johnson PE
Isothermal titration calorimetry (ITC) was used to determine the thermodynamic driving force for inhibitor binding to the enzyme dihydrofolate reductase (DHFR) from Escherichia coli. 1,4-Bis-{sulfanylmethyl}-3,6-dimethyl-benzene (1) binds DHFR:NADPH with a K(d) of 13±5 nM while the...
nmrlearner
Journal club
0
03-09-2011 02:20 PM
Residual interactions in unfolded bile acid-binding protein by (19) F NMR.
Residual interactions in unfolded bile acid-binding protein by (19) F NMR.
Residual interactions in unfolded bile acid-binding protein by (19) F NMR.
Protein Sci. 2011 Feb;20(2):327-35
Authors: Basehore HK, Ropson IJ
The folding initiation mechanism of human bile acid-binding protein (BABP) has been examined by (19) F NMR. Equilibrium unfolding studies of BABP labeled with fluorine at all eight of its phenylalanine residues showed that at least two sites experience changes in solvent exposure at high denaturant concentrations. Peak...
nmrlearner
Journal club
0
02-02-2011 02:40 AM
[NMR paper] Solution structure of the peptidoglycan binding domain of Bacillus subtilis cell wall lytic enzyme CwlC: characterization of the sporulation-related repeats by NMR.
Solution structure of the peptidoglycan binding domain of Bacillus subtilis cell wall lytic enzyme CwlC: characterization of the sporulation-related repeats by NMR.
Related Articles Solution structure of the peptidoglycan binding domain of Bacillus subtilis cell wall lytic enzyme CwlC: characterization of the sporulation-related repeats by NMR.
Biochemistry. 2005 Aug 2;44(30):10153-63
Authors: Mishima M, Shida T, Yabuki K, Kato K, Sekiguchi J, Kojima C
Bacillus subtilis CwlC is a cell wall lytic N-acetylmuramoyl-l-alanine amidase that plays an...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
Residual interactions in unfolded bile acid-binding protein by (19)F-NMR.
Residual interactions in unfolded bile acid-binding protein by (19)F-NMR.
Related Articles Residual interactions in unfolded bile acid-binding protein by (19)F-NMR.
Protein Sci. 2010 Nov 29;
Authors: Basehore HK, Ropson IJ
The folding initiation mechanism of human bile acid-binding protein (BABP) has been examined by (19)F-NMR. Equilibrium unfolding studies of BABP labeled with fluorine at all eight of its phenylalanine residues showed that at least two sites experience changes in solvent exposure at high denaturant concentrations. Peak assignments...
nmrlearner
Journal club
0
12-01-2010 04:41 PM
[NMR paper] Identification of the bile acid-binding site of the ileal lipid-binding protein by ph
Identification of the bile acid-binding site of the ileal lipid-binding protein by photoaffinity labeling, matrix-assisted laser desorption ionization-mass spectrometry, and NMR structure.
Related Articles Identification of the bile acid-binding site of the ileal lipid-binding protein by photoaffinity labeling, matrix-assisted laser desorption ionization-mass spectrometry, and NMR structure.
J Biol Chem. 2001 Mar 9;276(10):7291-301
Authors: Kramer W, Sauber K, Baringhaus KH, Kurz M, Stengelin S, Lange G, Corsiero D, Girbig F, König W, Weyland C
...