Thermodynamic and NMR analysis of inhibitor binding to dihydrofolate reductase.
Bioorg Med Chem. 2010 Dec 15;18(24):8485-92
Authors: Batruch I, Javasky E, Brown ED, Organ MG, Johnson PE
Isothermal titration calorimetry (ITC) was used to determine the thermodynamic driving force for inhibitor binding to the enzyme dihydrofolate reductase (DHFR) from Escherichia coli. 1,4-Bis-{[N-(1-imino-1-guanidino-methyl)]sulfanylmethyl}-3,6-dimethyl-benzene (1) binds DHFR:NADPH with a K(d) of 13±5 nM while the related inhibitor 1-{[N-(1-imino-guanidino-methyl)]sulfanylmethyl}-3-trifluoromethyl-benzene (2) binds DHFR:NADPH with a K(d) of 3.2±2.2 ?M. The binding of these inhibitors has both a favorable entropy and enthalpy of binding. Additionally, we observe positive binding cooperativity between both 1 and 2 and the cofactor NADPH. Binding of compound 1 to DHFR is 285-fold tighter in the presence of the NADPH cofactor than in its absence. We did not detect binding of 2 to DHFR in the absence of NADPH. The backbone amide (1)H and (15)N NMR resonances of DHFR:NADPH and both DHFR:NADPH inhibitor complexes were assigned in order to better understand the binding of these inhibitors in solution. The chemical shift perturbations observed with the binding of 1 were greatest at residues closest to the binding site, but significant perturbations also occur away from the inhibitor location at amino acids in the vicinity of residue 58 and in the GH loop. The pattern of chemical shift changes observed with the binding of 2 is similar to that seen with 1. The main differences in chemical shift perturbation between the two inhibitors are in the Met20 loop and in residues at the interface between the inhibitor and NADPH.
[NMR paper] Refolding of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate reductase in th
Refolding of tryptophan-labeled Escherichia coli dihydrofolate reductase in the presence of ligand: a stopped-flow NMR spectroscopy study.
Related Articles Refolding of tryptophan-labeled Escherichia coli dihydrofolate reductase in the presence of ligand: a stopped-flow NMR spectroscopy study.
Biochemistry. 1998 Jan 6;37(1):387-98
Authors: Hoeltzli SD, Frieden C
Escherichia coli dihydrofolate reductase contains five tryptophan residues that are spatially distributed throughout the protein and located in different secondary structural elements....
nmrlearner
Journal club
0
11-17-2010 11:06 PM
[NMR paper] Dynamics of trimethoprim bound to dihydrofolate reductase--a deuterium NMR study.
Dynamics of trimethoprim bound to dihydrofolate reductase--a deuterium NMR study.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Dynamics of trimethoprim bound to dihydrofolate reductase--a deuterium NMR study.
Solid State Nucl Magn Reson. 1996 Dec;7(3):193-201
Authors: Yang QX, Huang FY, Lin TH, Gelbaum L, Howell EE, Huang TH
We have employed deuterium NMR techniques to determine the dynamics of trimethoprim (TMP) in a binary complex with dihydrofolate reductase...
nmrlearner
Journal club
0
08-22-2010 02:20 PM
[NMR paper] Binding of the competitive inhibitor dCDP to ribonucleoside-diphosphate reductase fro
Binding of the competitive inhibitor dCDP to ribonucleoside-diphosphate reductase from Escherichia coli studied by 1H NMR. Different properties of the large protein subunit and the holoenzyme.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Binding of the competitive inhibitor dCDP to ribonucleoside-diphosphate reductase from Escherichia coli studied by 1H NMR. Different properties of the large protein subunit and the holoenzyme.
Eur J Biochem. 1992 Sep...
nmrlearner
Journal club
0
08-21-2010 11:45 PM
[NMR paper] Dihydrofolate reductase: sequential resonance assignments using 2D and 3D NMR and sec
Dihydrofolate reductase: sequential resonance assignments using 2D and 3D NMR and secondary structure determination in solution.
Related Articles Dihydrofolate reductase: sequential resonance assignments using 2D and 3D NMR and secondary structure determination in solution.
Biochemistry. 1991 Jun 25;30(25):6330-41
Authors: Carr MD, Birdsall B, Frenkiel TA, Bauer CJ, Jimenez-Barbero J, Polshakov VI, McCormick JE, Roberts GC, Feeney J
Three-dimensional (3D) heteronuclear NMR techniques have been used to make sequential 1H and 15N resonance...
nmrlearner
Journal club
0
08-21-2010 11:16 PM
[NMR paper] The conformations of trimethoprim/E. coli dihydrofolate reductase complexes. A 15N an
The conformations of trimethoprim/E. coli dihydrofolate reductase complexes. A 15N and 31P NMR study.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles The conformations of trimethoprim/E. coli dihydrofolate reductase complexes. A 15N and 31P NMR study.
FEBS Lett. 1991 May 20;283(1):44-6
Authors: Huang FY, Yang QX, Huang TH, Gelbaum L, Kuyper LF
We have employed 15N and 31P NMR techniques to characterize the conformations of trimethoprim (TMP)/E. coli dihydrofolate...
nmrlearner
Journal club
0
08-21-2010 11:16 PM
[NMR paper] NMR studies of interactions of ligands with dihydrofolate reductase.
NMR studies of interactions of ligands with dihydrofolate reductase.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR studies of interactions of ligands with dihydrofolate reductase.
Biochem Pharmacol. 1990 Jul 1;40(1):141-52
Authors: Feeney J
NMR spectroscopy is a useful technique for studying interactions, conformations and dynamic processes within ligand-protein complexes. Several examples of the application of the method to studies of complexes of anti-folate...