BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-19-2010, 08:32 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Thermodynamic and hydrodynamic properties of human tropoelastin. Analytical ultracent

Thermodynamic and hydrodynamic properties of human tropoelastin. Analytical ultracentrifuge and pulsed field-gradient spin-echo NMR studies.

Related Articles Thermodynamic and hydrodynamic properties of human tropoelastin. Analytical ultracentrifuge and pulsed field-gradient spin-echo NMR studies.

J Biol Chem. 2001 Jul 27;276(30):28042-50

Authors: Toonkool P, Regan DG, Kuchel PW, Morris MB, Weiss AS

Tropoelastin is the soluble precursor of elastin that bestows tissue elasticity in vertebrates. Tropoelastin is soluble at 20 degrees C in phosphate-buffered saline, pH 7.4, but at 37 degrees C equilibrium is established between soluble protein and insoluble coacervate. Sedimentation equilibrium studies performed before (20 degrees C) and after (37 degrees C) coacervation showed that the soluble component was strictly monomeric. Sedimentation velocity experiments revealed that at both temperatures soluble tropoelastin exists as two independently sedimenting monomeric species present in approximately equal concentrations. Species 1 had a frictional ratio at both temperatures of approximately 2.2, suggesting a very highly expanded or asymmetric protein. Species 2 displayed a frictional ratio at 20 degrees C of 1.4 that increased to 1.7 at 37 degrees C, indicating a compact and symmetrical conformation that expanded or became asymmetric at the higher temperature. The slow interconversion of the two monomeric species contrasts with the rapid and reversible process of coacervation suggesting both efficiently incorporate into the coacervate. A hydrated protein of equivalent molecular weight modeled as a sphere and a flexible chain was predicted to have a frictional ratio of 1.2 and 1.6, respectively. Tropoelastin appeared as a single species when studied by pulsed field-gradient spin-echo NMR, but computer modeling showed that the method was insensitive to the presence of two species of equal concentration having similar diffusion coefficients. Scintillation proximity assays using radiolabeled tropoelastin and sedimentation analysis showed that the coacervation at 37 degrees C was a highly cooperative monomer-n-mer self-association. A critical concentration of 3.4 g/liter was obtained when the coacervate was modeled as a helical polymer formed from the monomers via oligomeric intermediates.

PMID: 11371569 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis Abstract The phosphorylation-specific peptidyl-prolyl isomerase Pin1 catalyzes the isomerization of the peptide bond preceding a proline residue between cis and trans isomers. To best understand the mechanisms of Pin1 regulation, rigorous enzymatic assays of isomerization are required. However, most measures of isomerase activity require significant constraints on substrate sequence and only yield rate constants for the cis isomer, kcatcis and apparent Michaelis constants, ...
nmrlearner Journal club 0 09-30-2011 08:01 PM
Thermodynamic and NMR analysis of inhibitor binding to dihydrofolate reductase.
Thermodynamic and NMR analysis of inhibitor binding to dihydrofolate reductase. Thermodynamic and NMR analysis of inhibitor binding to dihydrofolate reductase. Bioorg Med Chem. 2010 Dec 15;18(24):8485-92 Authors: Batruch I, Javasky E, Brown ED, Organ MG, Johnson PE Isothermal titration calorimetry (ITC) was used to determine the thermodynamic driving force for inhibitor binding to the enzyme dihydrofolate reductase (DHFR) from Escherichia coli. 1,4-Bis-{sulfanylmethyl}-3,6-dimethyl-benzene (1) binds DHFR:NADPH with a K(d) of 13±5 nM while the...
nmrlearner Journal club 0 03-09-2011 02:20 PM
Hydrodynamic dispersion in [Formula: see text] -lactoglobulin gels measured by PGSE NMR.
Hydrodynamic dispersion in -lactoglobulin gels measured by PGSE NMR. Hydrodynamic dispersion in -lactoglobulin gels measured by PGSE NMR. Eur Phys J E Soft Matter. 2011 Feb;34(2):1-15 Authors: Fridjonsson EO, Bernin D, Seymour JD, Nydén M, Codd SL The displacement scale dependent molecular dynamics of solvent water molecules flowing through -lactoglobulin gels are measured by pulse gradient spin echo (PGSE) nuclear magnetic resonance (NMR). Gels formed under different p H conditions generate structures which are characterized by magnetic...
nmrlearner Journal club 0 03-02-2011 11:54 AM
Industrial Postdoctoral Chemist( analytical, organic or polymer) | Avomeen Analytical Services
Industrial Postdoctoral Chemist( analytical, organic or polymer) | Avomeen Analytical Services US - Ann Arbor Michigan, Ph.D. in Analytical, organic or polymer chemistry. Hands-on knowledge of following techniques Analytical instrumentation is preferred: FT-IR, NMR, GC, GC-MS, LC-MS, TGA, DSC, ICP, and SEM-EDS. Must be More...
nmrlearner Job marketplace 0 12-19-2010 01:50 AM
[NMR paper] Thermodynamic interpretation of protein dynamics from NMR relaxation measurements.
Thermodynamic interpretation of protein dynamics from NMR relaxation measurements. Related Articles Thermodynamic interpretation of protein dynamics from NMR relaxation measurements. Protein Pept Lett. 2005 Apr;12(3):235-40 Authors: Spyracopoulos L Protein dynamics and thermodynamics can be characterized through measurements of relaxation rates of side chain (2)H and (13)C, and backbone (15)N nuclei using NMR spectroscopy. The rates reflect protein motions on timescales from picoseconds to milliseconds. Backbone and methyl side chain NMR...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Interpretation of 15N NMR relaxation data of globular proteins using hydrodynamic cal
Interpretation of 15N NMR relaxation data of globular proteins using hydrodynamic calculations with HYDRONMR. Related Articles Interpretation of 15N NMR relaxation data of globular proteins using hydrodynamic calculations with HYDRONMR. J Biomol NMR. 2002 Jun;23(2):139-50 Authors: Bernadó P, García de la Torre J, Pons M HYDRONMR is an implementation of state of the art hydrodynamic modeling to calculate the spectral density functions for NH or C(alpha)-H vectors in a rigid protein structure starting from an atomic level representation. Thus...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Thermodynamic insights into proteins from NMR spin relaxation studies.
Thermodynamic insights into proteins from NMR spin relaxation studies. Related Articles Thermodynamic insights into proteins from NMR spin relaxation studies. Curr Opin Struct Biol. 2001 Oct;11(5):555-9 Authors: Spyracopoulos L, Sykes BD NMR spin relaxation measurements of picosecond to nanosecond timescale backbone and sidechain fluctuations of protein molecules, and subsequent entropic interpretation yield interesting, but sometimes counterintuitive, insights into proteins. The stabilities of proteins and protein interactions are achieved...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] Hydrodynamic radii of native and denatured proteins measured by pulse field gradient
Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Related Articles Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry. 1999 Dec 14;38(50):16424-31 Authors: Wilkins DK, Grimshaw SB, Receveur V, Dobson CM, Jones JA, Smith LJ Pulse field gradient NMR methods have been used to determine the effective hydrodynamic radii of a range of native and nonnative protein conformations. From these experimental data, empirical relationships...
nmrlearner Journal club 0 11-18-2010 08:31 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:14 AM.


Map