Related ArticlesTertiary structure of RBD2 and backbone dynamics of RBD1 and RBD2 of the human U1A protein determined by NMR spectroscopy.
Biochemistry. 1997 Aug 26;36(34):10393-405
Authors: Lu J, Hall KB
The human U1A protein has two putative RNA binding domains, one at the N-terminal region of the protein (RBD1) and the other at the C-terminal end (RBD2). RBD1 binds tightly and specifically to one of the stem loops of the U1 snRNA, as well as to its own 3'-UTR. In contrast, RBD2 does not appear to associate with any RNA. The two domains share 25% amino acid identity, and both have the same betaalphabeta-betaalphabeta secondary structure fold. In this work, 13C/15N/1H multidimensional NMR methods were used to obtain side-chain assignments for RBD2, and then the tertiary structure was calculated using a distance geometry/simulated annealing algorithm that employs pairwise Gaussian metrization. RBD2 is shown to fold into an alpha/beta sandwich with a four-stranded antiparallel beta-sheet, which is the typical global topology of these domains. Specific structural features of RBD2 include a beta-bulge in beta2, N-capping boxes for both alpha-helices, and an extremely shallow twist of its beta-sheet. The 15N backbone dynamics of these two structurally homologous RBDs are significantly different, compared using order parameters and T2 exchange terms in the Lipari and Szabo model-free formalism. Conformational exchange observed in RBD1, which is absent in RBD2, may correlate to the mechanism of RNA binding.
[NMR paper] Backbone dynamics of the human MIA protein studied by (15)N NMR relaxation: implicati
Backbone dynamics of the human MIA protein studied by (15)N NMR relaxation: implications for extended interactions of SH3 domains.
Related Articles Backbone dynamics of the human MIA protein studied by (15)N NMR relaxation: implications for extended interactions of SH3 domains.
Protein Sci. 2003 Mar;12(3):510-9
Authors: Stoll R, Renner C, Buettner R, Voelter W, Bosserhoff AK, Holak TA
The melanoma inhibitory activity (MIA) protein is a clinically valuable marker in patients with malignant melanoma as enhanced values diagnose metastatic...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Solution NMR structure and backbone dynamics of the PsaE subunit of photosystem I fro
Solution NMR structure and backbone dynamics of the PsaE subunit of photosystem I from Synechocystis sp. PCC 6803.
Related Articles Solution NMR structure and backbone dynamics of the PsaE subunit of photosystem I from Synechocystis sp. PCC 6803.
Biochemistry. 2002 Nov 26;41(47):13902-14
Authors: Barth P, Savarin P, Gilquin B, Lagoutte B, Ochsenbein F
PsaE is a small peripheral subunit of photosystem I (PSI) that is very accessible to the surrounding medium. It plays an essential role in optimizing the interactions with the soluble electron...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] NMR studies of the backbone flexibility and structure of human growth hormone: a comp
NMR studies of the backbone flexibility and structure of human growth hormone: a comparison of high and low pH conformations.
Related Articles NMR studies of the backbone flexibility and structure of human growth hormone: a comparison of high and low pH conformations.
J Mol Biol. 2002 May 3;318(3):679-95
Authors: Kasimova MR, Kristensen SM, Howe PW, Christensen T, Matthiesen F, Petersen J, Sørensen HH, Led JJ
(15)N NMR relaxation parameters and amide (1)H/(2)H-exchange rates have been used to characterize the structural flexibility of human...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
NMR backbone dynamics studies of human PED/PEA-15 outline protein functional sites.
NMR backbone dynamics studies of human PED/PEA-15 outline protein functional sites.
NMR backbone dynamics studies of human PED/PEA-15 outline protein functional sites.
FEBS J. 2010 Sep 3;
Authors: Farina B, Pirone L, Russo L, Viparelli F, Doti N, Pedone C, Pedone EM, Fattorusso R
PED/PEA-15 (phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes) is a ubiquitously expressed protein and a key regulator of cell growth and glucose metabolism. PED/PEA-15 mediates both homotypic and heterotypic interactions and is constituted by...
nmrlearner
Journal club
0
09-10-2010 11:53 PM
[NMR paper] NMR characterization of structure, backbone dynamics, and glutathione binding of the
NMR characterization of structure, backbone dynamics, and glutathione binding of the human macrophage migration inhibitory factor (MIF).
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles NMR characterization of structure, backbone dynamics, and glutathione binding of the human macrophage migration inhibitory factor (MIF).
Protein Sci. 1996...
nmrlearner
Journal club
0
08-22-2010 02:20 PM
[NMR paper] Relaxation study of the backbone dynamics of human profilin by two-dimensional 1H-15N
Relaxation study of the backbone dynamics of human profilin by two-dimensional 1H-15N NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Relaxation study of the backbone dynamics of human profilin by two-dimensional 1H-15N NMR.
FEBS Lett. 1993 Dec 28;336(3):457-61
Authors: Constantine KL, Friedrichs MS, Bell AJ, Lavoie TB, Mueller L, Metzler WJ
The dynamic properties of 111 backbone HN sites in uncomplexed human profilin, a protein of 139 residues, have been...
nmrlearner
Journal club
0
08-22-2010 03:01 AM
[NMR paper] 1H, 13C, and 15N NMR backbone assignments and secondary structure of human interferon
1H, 13C, and 15N NMR backbone assignments and secondary structure of human interferon-gamma.
Related Articles 1H, 13C, and 15N NMR backbone assignments and secondary structure of human interferon-gamma.
Biochemistry. 1992 Sep 8;31(35):8180-90
Authors: Grzesiek S, Döbeli H, Gentz R, Garotta G, Labhardt AM, Bax A
1H, 13C, and 15N NMR assignments of the protein backbone of human interferon-gamma, a homodimer of 31.4 kDa, have been made using the recently introduced three-dimensional (3D) triple-resonance NMR techniques. It is shown that, despite...
nmrlearner
Journal club
0
08-21-2010 11:45 PM
Solution structure of the RBD1,2 domains from human nucleolin
Solution structure of the RBD1,2 domains from human nucleolin
Content Type Journal Article
DOI 10.1007/s10858-010-9412-1
Authors
Sengodagounder Arumugam, University of Louisville JG Brown Cancer Center 505 South Hancock St. Louisville KY 40202 USA
M. Clarke Miller, University of Louisville JG Brown Cancer Center 505 South Hancock St. Louisville KY 40202 USA
James Maliekal, University of Louisville JG Brown Cancer Center 505 South Hancock St. Louisville KY 40202 USA