Related ArticlesTemperature-reversible eruptions of vesicles in model membranes studied by NMR.
Biophys J. 1992 May;61(5):1413-26
Authors: Nezil FA, Bayerl S, Bloom M
Deuterium (2H) and phosphorus (31P) nuclear magnetic resonance (NMR) and freeze-fracture electron microscopy were used to study spontaneous vesiculation in model membranes composed of POPC:POPS with or without cholesterol. The NMR spectra indicated the presence of a central isotropic line, the intensity of which is reversibly and linearly dependent upon temperature in the L alpha phase, with no hysteresis when cycling between higher and lower temperatures. Freeze-fracture microscopy showed small, apparently connected vesicles that were only present when the samples were frozen (for freeze-fracture) from an initial temperature of 40-60 degrees C, and absent when the samples are frozen from an initial temperature of 20 degrees C. Analysis of motional narrowing was consistent with the isotropic lines being due to lateral diffusion in (and tumbling of) small vesicles (diameters approximately 50 nm). These results were interpreted in terms of current theories of shape fluctuations in large unilamellar vesicles which predict that small daughter vesicles may spontaneously "erupt" from larger parent vesicles in order to expel the excess area created by thermal expansion of the bilayer surface at constant volume. Assuming that all the increased area due to increasing temperature is associated with the isotropic lines, the NMR results allowed a novel estimate of the coefficient of area expansion alpha A in multilamellar vesicles (MLVs) which is in good agreement with micromechanical measurements upon giant unilamellar vesicles of similar composition. Experiments performed on unilamellar vesicles, which had been placed upon glass beads, confirmed that alpha A determined in this way is unchanged compared with the MLV case. Addition of the highly positively charged (extrinsic) myelin basic protein (MBP) to a POPC:POPS system showed that membrane eruptions of the type described here occur in response to the presence of this protein.
Neurotoxin II Bound to Acetylcholine Receptors in Native Membranes Studied by Dynamic Nuclear Polarization NMR
Neurotoxin II Bound to Acetylcholine Receptors in Native Membranes Studied by Dynamic Nuclear Polarization NMR
Arne H. Linden, Sascha Lange, W. Trent Franks, U?mit Akbey, Edgar Specker, Barth-Jan van Rossum and Hartmut Oschkinat
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja206999c/aop/images/medium/ja-2011-06999c_0003.gif
Journal of the American Chemical Society
DOI: 10.1021/ja206999c
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/4d1LYPHtCFw
nmrlearner
Journal club
0
11-11-2011 08:26 AM
Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy.
Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy.
Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy.
Biochim Biophys Acta. 2011 Aug 3;
Authors: Gustavsson M, Traaseth NJ, Veglia G
In this paper, we analyzed the ground and excited states of phospholamban (PLN), a membrane protein that regulates sarcoplasmic reticulum calcium ATPase (SERCA), in different membrane mimetic environments....
nmrlearner
Journal club
0
08-16-2011 01:19 PM
(31)P NMR and AFM studies on the destabilization of cell and model membranes by the major bovine seminal plasma protein, PDC-109.
(31)P NMR and AFM studies on the destabilization of cell and model membranes by the major bovine seminal plasma protein, PDC-109.
Related Articles (31)P NMR and AFM studies on the destabilization of cell and model membranes by the major bovine seminal plasma protein, PDC-109.
IUBMB Life. 2010 Nov;62(11):841-51
Authors: Damai RS, Sankhala RS, Anbazhagan V, Swamy MJ
The effect of PDC-109 binding to dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) and supported membranes was investigated by...
nmrlearner
Journal club
0
12-01-2010 04:41 PM
[NMR paper] Temperature-dependence of protein hydrogen bond properties as studied by high-resolut
Temperature-dependence of protein hydrogen bond properties as studied by high-resolution NMR.
Related Articles Temperature-dependence of protein hydrogen bond properties as studied by high-resolution NMR.
J Mol Biol. 2002 Apr 12;317(5):739-52
Authors: Cordier F, Grzesiek S
The temperature-dependence of a large number of NMR parameters describing hydrogen bond properties in the protein ubiquitin was followed over a range from 5 to 65 degrees C. The parameters comprise hydrogen bond (H-bond) scalar couplings, h3JNC', chemical shifts, amide...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] A model of reversible inhibitors in the gastric H+/K+-ATPase binding site determined
A model of reversible inhibitors in the gastric H+/K+-ATPase binding site determined by rotational echo double resonance NMR.
Related Articles A model of reversible inhibitors in the gastric H+/K+-ATPase binding site determined by rotational echo double resonance NMR.
J Biol Chem. 2001 Nov 16;276(46):43197-204
Authors: Watts JA, Watts A, Middleton DA
Several close analogues of the noncovalent H(+)/K(+)-ATPase inhibitor SCH28080 (2-methyl-3-cyanomethyl-8-(phenylmethoxy)imidazopyridine) have been screened for activity and examined in the...
nmrlearner
Journal club
0
11-19-2010 08:44 PM
[NMR paper] Interaction of a type II myosin with biological membranes studied by 2H solid state N
Interaction of a type II myosin with biological membranes studied by 2H solid state NMR.
Related Articles Interaction of a type II myosin with biological membranes studied by 2H solid state NMR.
Biochemistry. 1998 Apr 21;37(16):5582-8
Authors: Arêas JA, Gröbner G, Glaubitz C, Watts A
Deuterium nuclear magnetic resonance spectroscopy (2H NMR) has been employed to investigate the interaction of lung type II myosin protein with neutral bilayers containing dimyristoylphosphatidylcholine (DMPC) as the only constituent and mixed bilayers containing...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
[NMR paper] Locations of local anesthetic dibucaine in model membranes and the interaction betwee
Locations of local anesthetic dibucaine in model membranes and the interaction between dibucaine and a Na+ channel inactivation gate peptide as studied by 2H- and 1H-NMR spectroscopies.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Locations of local anesthetic dibucaine in model membranes and the interaction between dibucaine and a Na+ channel inactivation gate peptide as studied by 2H-...
nmrlearner
Journal club
0
08-22-2010 02:20 PM
[NMR paper] NMR studies of phospholipase C hydrolysis of phosphatidylcholine in model membranes.
NMR studies of phospholipase C hydrolysis of phosphatidylcholine in model membranes.
Related Articles NMR studies of phospholipase C hydrolysis of phosphatidylcholine in model membranes.
J Biol Chem. 1993 Feb 5;268(4):2431-4
Authors: Bhamidipati SP, Hamilton JA
Hydrolysis of phospholipids in biological membranes by phospholipase C (PLC) produces an important second messenger molecule, 1,2-diacylglycerol (DAG), that is essential for the activation of protein kinase C (PKC). While the effects of DAG on model membranes have been investigated...