Shortening spin-lattice relaxation using a copper-chelated lipid at low-temperatures - A magic angle spinning solid-state NMR study on a membrane-bound protein
From The DNP-NMR Blog:
Shortening spin-lattice relaxation using a copper-chelated lipid at low-temperatures - A magic angle spinning solid-state NMR study on a membrane-bound protein
This article is not about DNP. However, the authors describe how to use paramagnetic relaxation enhancers to speed up the data acquisition and with this increase the sensitivity. A similar effect happens when a paramagnetic polarization agent is used in a DNP-NMR experiment and often the only reason why it is actually possible to run 1H-DNP-NMR experiments with recycling delays of several seconds...
[NMR paper] Shortening spin-lattice relaxation using a copper-chelated lipid at low-temperatures - A magic angle spinning solid-state NMR study on a membrane-bound protein.
Shortening spin-lattice relaxation using a copper-chelated lipid at low-temperatures - A magic angle spinning solid-state NMR study on a membrane-bound protein.
Related Articles Shortening spin-lattice relaxation using a copper-chelated lipid at low-temperatures - A magic angle spinning solid-state NMR study on a membrane-bound protein.
J Magn Reson. 2013 Nov 1;237C:175-181
Authors: Yamamoto K, Caporini MA, Im S, Waskell L, Ramamoorthy A
Abstract
Inherent low sensitivity of NMR spectroscopy has been a major disadvantage, especially to...
nmrlearner
Journal club
0
11-20-2013 12:52 PM
[NMR paper] Shortening Spin-lattice Relaxation Using a Copper-Chelated lipid at Low-Temperatures – A Magic Angle Spinning Solid-State NMR Study on a Membrane-Bound Protein
Shortening Spin-lattice Relaxation Using a Copper-Chelated lipid at Low-Temperatures – A Magic Angle Spinning Solid-State NMR Study on a Membrane-Bound Protein
Publication date: Available online 1 November 2013
Source:Journal of Magnetic Resonance</br>
Author(s): Kazutoshi Yamamoto , Marc Caporini , Sangchoul Im , Lucy Waskell , Ayyalusamy Ramamoorthy</br>
Inherent low sensitivity of NMR spectroscopy has been a major disadvantage, especially to study biomolecules like membrane proteins. Recent studies have successfully demonstrated the advantages of performing...
nmrlearner
Journal club
0
11-01-2013 03:48 AM
NMR solution structure of human VRK1 reveals the C-terminal tail essential for structural stability and autocatalytic activity.
NMR solution structure of human VRK1 reveals the C-terminal tail essential for structural stability and autocatalytic activity.
NMR solution structure of human VRK1 reveals the C-terminal tail essential for structural stability and autocatalytic activity.
J Biol Chem. 2011 May 3;
Authors: Shin J, Chakraborty G, Bharatham N, Kang C, Tochio N, Koshiba S, Kigawa T, Kim W, Kim KT, Yoon HS
Vaccinia-related kinase 1 (VRK1) is one of the mitotic kinases which play important roles in cell cycle, nuclear condensation and transcription regulation. Kinase...
nmrlearner
Journal club
0
05-06-2011 12:02 PM
[NMR paper] Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel
Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers.
Related Articles Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers.
Protein Sci. 1998 Feb;7(2):342-8
Authors: Kim Y, Valentine K, Opella SJ, Schendel SL, Cramer WA
The colicin E1 channel polypeptide was shown to be organized anisotropically in membranes by solid-state NMR analysis of samples of uniformly 15N-labeled protein in oriented planar phospholipid bilayers. The 190...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
Solid-State NMR Reveals Structural and Dynamical Properties of a Membrane Protein
http://pubs.acs.org/cgi-bin/abstract.cgi/jacsat/2007/129/i21/abs/ja069028m.html
Solid-State NMR Reveals Structural and Dynamical Properties of a Membrane-Anchored Electron-Carrier Protein, Cytochrome b<sub>5</sub>
<aui auinm="Durr, U. H. N."> <aui auinm="Yamamoto, K."> <aui auinm="Im, S.-C."> <aui auinm="Waskell, L."> <aui auinm="Ramamoorthy, A."> <aug><aul></aul></aug></aui></aui></aui></aui></aui> <au>Ulrich H. N. Dürr,</au> <au>Kazutoshi Yamamoto,</au><au>Sang-Choul Im,</au><au>Lucy Waskell,and </au><au>Ayyalusamy Ramamoorthy*</au>
*ramamoor@umich.edu
<aff></aff>
...