BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 11:41 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default A systematic comparison of three structure determination methods from NMR data: depen

A systematic comparison of three structure determination methods from NMR data: dependence upon quality and quantity of data.

Related Articles A systematic comparison of three structure determination methods from NMR data: dependence upon quality and quantity of data.

J Biomol NMR. 1992 Jul;2(4):373-88

Authors: Liu Y, Zhao D, Altman R, Jardetzky O

We have systematically examined how the quality of NMR protein structures depends on (1) the number of NOE distance constraints, (2) their assumed precision, (3) the method of structure calculation and (4) the size of the protein. The test sets of distance constraints have been derived from the crystal structures of crambin (5 kDa) and staphylococcal nuclease (17 kDa). Three methods of structure calculation have been compared: Distance Geometry (DGEOM), Restrained Molecular Dynamics (XPLOR) and the Double Iterated Kalman Filter (DIKF). All three methods can reproduce the general features of the starting structure under all conditions tested. In many instances the apparent precision of the calculated structure (as measured by the RMS dispersion from the average) is greater than its accuracy (as measured by the RMS deviation of the average structure from the starting crystal structure). The global RMS deviations from the reference structures decrease exponentially as the number of constraints is increased, and after using about 30% of all potential constraints, the errors asymptotically approach a limiting value. Increasing the assumed precision of the constraints has the same qualitative effect as increasing the number of constraints. For comparable numbers of constraints/residue, the precision of the calculated structure is less for the larger than for the smaller protein, regardless of the method of calculation. The accuracy of the average structure calculated by Restrained Molecular Dynamics is greater than that of structures obtained by purely geometric methods (DGEOM and DIKF).

PMID: 1511237 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Systematic comparison of crystal and NMR protein structures deposited in the protein data bank.
Systematic comparison of crystal and NMR protein structures deposited in the protein data bank. Systematic comparison of crystal and NMR protein structures deposited in the protein data bank. Open Biochem J. 2010;4:83-95 Authors: Sikic K, Tomic S, Carugo O Nearly all the macromolecular three-dimensional structures deposited in Protein Data Bank were determined by either crystallographic (X-ray) or Nuclear Magnetic Resonance (NMR) spectroscopic methods. This paper reports a systematic comparison of the crystallographic and NMR results deposited in...
nmrlearner Journal club 0 02-05-2011 05:28 PM
[NMR paper] Comparison of X-ray and NMR structures: is there a systematic difference in residue contacts between X-ray- and NMR-resolved protein structures?
Comparison of X-ray and NMR structures: is there a systematic difference in residue contacts between X-ray- and NMR-resolved protein structures? Related Articles Comparison of X-ray and NMR structures: is there a systematic difference in residue contacts between X-ray- and NMR-resolved protein structures? Proteins. 2005 Jul 1;60(1):139-47 Authors: Garbuzynskiy SO, Melnik BS, Lobanov MY, Finkelstein AV, Galzitskaya OV We have compared structures of 78 proteins determined by both NMR and X-ray methods. It is shown that X-ray and NMR structures...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Multidimensional NMR methods for protein structure determination.
Multidimensional NMR methods for protein structure determination. Related Articles Multidimensional NMR methods for protein structure determination. IUBMB Life. 2001 Dec;52(6):291-302 Authors: Kanelis V, Forman-Kay JD, Kay LE Structural studies of proteins are critical for understanding biological processes at the molecular level. Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for obtaining structural and dynamic information on proteins and protein-ligand complexes. In the present review, methodologies for NMR structure...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] Expression and secondary structure determination by NMR methods of the major house du
Expression and secondary structure determination by NMR methods of the major house dust mite allergen Der p 2. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-standard-jbc_full_free.gif Related Articles Expression and secondary structure determination by NMR methods of the major house dust mite allergen Der p 2. J Biol Chem. 1997 Oct 24;272(43):26893-8 Authors: Mueller GA, Smith AM, Williams DC, Hakkaart GA, Aalberse RC, Chapman MD, Rule GS, Benjamin DC There exists a strong...
nmrlearner Journal club 0 08-22-2010 05:08 PM
Combining NMR and EPR Methods for Homodimer Protein Structure Determination.
Combining NMR and EPR Methods for Homodimer Protein Structure Determination. Related Articles Combining NMR and EPR Methods for Homodimer Protein Structure Determination. J Am Chem Soc. 2010 Aug 10; Authors: Yang Y, Ramelot TA, McCarrick RM, Ni S, Feldmann EA, Cort JR, Wang H, Ciccosanti C, Jiang M, Janjua H, Acton TB, Xiao R, Everett JK, Montelione GT, Kennedy MA There is a general need to develop more powerful and more robust methods for structural characterization of homodimers, homo-oligomers, and multiprotein complexes using...
nmrlearner Journal club 0 08-17-2010 03:36 AM
Structure-oriented methods for protein NMR data analysis
Structure-oriented methods for protein NMR data analysis Publication year: 2010 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 3 March 2010</br> Guillermo A., Bermejo , Miguel, Llinás</br> More...
nmrlearner Journal club 0 08-16-2010 03:50 AM
Combining NMR and EPR Methods for Homodimer Protein Structure Determination
http://pubs.acs.org//appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja105080h/aop/images/medium/ja-2010-05080h_0003.gif Combining NMR and EPR Methods for Homodimer Protein Structure Determination There is a general need to develop more powerful and more robust methods for structural characterization of homodimers, homo-oligomers, and multiprotein complexes using solution-state NMR methods. In recent years, there has been increasing emphasis on integrating distinct and complementary methodologies for structure determination of multiprotein ...
nmrlearner Journal club 0 08-14-2010 05:56 AM
KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies
KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies Naohiro Kobayashi, Junji Iwahara, Seizo Koshiba, Tadashi Tomizawa, Naoya Tochio, Peter Güntert, Takanori Kigawa and Shigeyuki Yokoyama Journal of Biomolecular NMR; 2007; 39(1) pp 31 - 52 Abstract: The recent expansion of structural genomics has increased the demands for quick and accurate protein structure determination by NMR spectroscopy. The conventional strategy without an automated protocol can no longer satisfy the needs of high-throughput...
stewart Journal club 0 08-05-2008 01:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:13 PM.


Map