Related ArticlesSynthesis and structure determination by NMR of a putative vacuolar targeting peptide and model of a proteinase inhibitor from Nicotiana alata.
Biochemistry. 1996 Jan 16;35(2):369-78
Authors: Nielsen KJ, Hill JM, Anderson MA, Craik DJ
NA-proPI is a 40.3-kDa multidomain precursor protein found in the stigma of the ornamental tobacco Nicotiana alata. It is selectively targeted to the vacuole and, as the plant matures, is processed to produce a series of five 6-kDa proteinase inhibitors (one chymotrypsin and four trypsin reactive sites) which are thought to play a vital role in plant protection against insect pests. A putative sixth domain with a chymotrypsin reactive site is likely to be formed by three disulfide bridges linking the N- and C-terminal fragments of NA-proPI. This domain contains two distinct structural elements: a 54-residue sequence with high identity to each of the five repeated PI domains, and a nonrepeated 25-residue sequence at the C-terminus which is proposed to contain a vacuolar targeting peptide. The structure of the putative sixth domain was predicted using a combination of secondary structure prediction and homology modeling based on the known structure of one of the intact domains. A 26-residue peptide corresponding to the nonrepeated C-terminal sequence and encompassing the putative vacuolar targeting sequence was synthesized and its structure determined using 1H NMR spectroscopy and simulated annealing calculations. The peptide was found to adopt an amphipathic helical structure. The calculations based on NOE data suggested that the helix is curved, with a hydrophobic concave face and a hydrophilic convex face. This curvature is consistent with an observed periodicity in backbone NH chemical shifts. The structure of the entire sixth domain was modeled by combining the experimentally determined structure of the putative vacuolar targeting peptide with the homology model of the PI domain. In this model the alpha-helix of the putative targeting peptide protrudes from the otherwise compact PI domain. This observation is consistent with the requirement for targeting sequences to be relatively exposed for recognition by the sorting apparatus. As there is no consensus on the structure of vacuolar targeting sequences, this study provides a valuable insight into their potential mechanism of interaction with the cellular sorting apparatus.
Revealing Protein Structures in Solid-Phase Peptide Synthesis by 13C Solid-State NMR: Evidence of Excessive Misfolding for Alzheimer’s ?
Revealing Protein Structures in Solid-Phase Peptide Synthesis by 13C Solid-State NMR: Evidence of Excessive Misfolding for Alzheimer’s ?
Songlin Wang and Yoshitaka Ishii
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja212190z/aop/images/medium/ja-2011-12190z_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja212190z
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/6EE7uthrnLg
[Optimization of the methods for small peptide solution structure determination by NMR spectroscopy].
.
.
Mol Biol (Mosk). 2010 Nov-Dec;44(6):1075-85
Authors:
NMR spectroscopy was recognized as a method of protein structure determination in solution. However, determination of the conformation of small peptides, which undergo fast molecular motions, remains a challenge. This is mainly caused by impossibility to collect required quantity of the distance and dihedral angle restraints from NMR spectra. At the same time, short charged peptides play an important role in a number of biological processes, in particular in pathogenesis of neurodegenerative...
nmrlearner
Journal club
0
02-05-2011 05:28 PM
[NMR paper] NMR structure of HI0004, a putative essential gene product from Haemophilus influenza
NMR structure of HI0004, a putative essential gene product from Haemophilus influenzae, and comparison with the X-ray structure of an Aquifex aeolicus homolog.
Related Articles NMR structure of HI0004, a putative essential gene product from Haemophilus influenzae, and comparison with the X-ray structure of an Aquifex aeolicus homolog.
Protein Sci. 2005 Feb;14(2):424-30
Authors: Yeh DC, Parsons LM, Parsons JF, Liu F, Eisenstein E, Orban J
The solution structure of the 154-residue conserved hypothetical protein HI0004 has been determined using...
nmrlearner
Journal club
0
11-24-2010 11:14 PM
[NMR paper] Structure determination of a peptide model of the repeated helical domain in Samia cy
Structure determination of a peptide model of the repeated helical domain in Samia cynthia ricini silk fibroin before spinning by a combination of advanced solid-state NMR methods.
Related Articles Structure determination of a peptide model of the repeated helical domain in Samia cynthia ricini silk fibroin before spinning by a combination of advanced solid-state NMR methods.
J Am Chem Soc. 2003 Jun 18;125(24):7230-7
Authors: Nakazawa Y, Asakura T
Fibrous proteins unlike globular proteins, contain repetitive amino acid sequences, giving rise...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Solution structure determination by NMR spectroscopy of a synthetic peptide correspon
Solution structure determination by NMR spectroscopy of a synthetic peptide corresponding to a putative amphipathic alpha-helix of spiralin: resonance assignment, distance geometry and simulated annealing.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Solution structure determination by NMR spectroscopy of a synthetic peptide corresponding to a putative amphipathic alpha-helix of spiralin: resonance assignment, distance geometry and simulated annealing.
Biochim Biophys Acta. 1995 May...
nmrlearner
Journal club
0
08-22-2010 03:41 AM
Analysis of NMR Chemical Shifts in Peptide & Protein Structure Determination-Wang '08
Analysis of NMR Chemical Shifts in Peptide and Protein Structure Determination
By Liya Wang (2008)
Amazon book description
Chemical shifts provide detailed information about non-covalent structure, solvent interactions, ionization constants, ring orientations, hydrogen bond interactions, and other phenomena. Since different chemical shift data sets are not necessarily comparable without corrections or adjustments, the applicability of statistical analysis of NMR chemical shifts to biomolecules has so far been limited. We use the term "congruent" to describe data sets that can be...