Related ArticlesSynthesis, enhanced fusogenicity, and solid state NMR measurements of cross-linked HIV-1 fusion peptides.
Biochemistry. 2003 Apr 1;42(12):3527-35
Authors: Yang R, Yang J, Weliky DP
In the HIV-1 gp41 and other viral fusion proteins, the minimal oligomerization state is believed to be trimeric with three N-terminal fusion peptides inserting into the membrane in close proximity. Previous studies have demonstrated that the fusion peptide by itself serves as a useful model fusion system, at least to the hemifusion stage in which the viral and target cell lipids are mixed. In the present study, HIV-1 fusion peptides were chemically synthesized and cross-linked at their C-termini to form dimers or trimers. C-terminal trimerization is their likely topology in the fusogenic form of the intact gp41 protein. The fusogenicity of the peptides was then measured in an intervesicle lipid mixing assay, and the assay results were compared to those of the monomer. For monomer, dimer, and trimer at peptide strand/lipid mol ratios between 0.0050 and 0.010, the final extent of lipid mixing for the dimer and trimer was 2-3 times greater than for the monomer. These data suggest that the higher local concentration of peptide strands in the cross-linked peptides enhances fusogenicity and that oligomerization of the fusion peptide in gp41 may enhance the rate of viral/target cell membrane fusion. For gp41, this effect is in addition to the role of the trimeric coiled-coil structure in bringing about apposition of viral and target cell membranes. NMR measurements on the membrane-associated dimeric fusion peptide were consistent with an extended structure at Phe-8, which is the same as has been observed for the membrane-bound monomer in the same lipid composition.
Revealing Protein Structures in Solid-Phase Peptide Synthesis by 13C Solid-State NMR: Evidence of Excessive Misfolding for Alzheimer’s ?
Revealing Protein Structures in Solid-Phase Peptide Synthesis by 13C Solid-State NMR: Evidence of Excessive Misfolding for Alzheimer’s ?
Songlin Wang and Yoshitaka Ishii
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja212190z/aop/images/medium/ja-2011-12190z_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja212190z
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/6EE7uthrnLg
nmrlearner
Journal club
0
01-31-2012 08:34 PM
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy
Ivan V. Sergeyev, Loren A. Day, Amir Goldbourt and Ann E. McDermott
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2043062/aop/images/medium/ja-2011-043062_0007.gif
Journal of the American Chemical Society
DOI: 10.1021/ja2043062
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/EeKgo5vg1K0
nmrlearner
Journal club
0
11-30-2011 10:45 PM
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy.
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy.
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy.
J Am Chem Soc. 2011 Aug 22;
Authors: Sergeyev IV, Day LA, Goldbourt A, McDermott AE
Abstract
Solid state NMR spectra, including dynamic nuclear polarization enhanced 400 MHz spectra acquired at 100K, as well as non-DNP spectra at a variety of field strengths and...
nmrlearner
Journal club
0
08-23-2011 04:03 PM
[NMR paper] Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in
Cross-correlated relaxation enhanced 1H13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes.
Related Articles Cross-correlated relaxation enhanced 1H13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes.
J Am Chem Soc. 2003 Aug 27;125(34):10420-8
Authors: Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE
A comparison of HSQC and HMQC pulse schemes for recording (1)H(13)C correlation maps of protonated methyl groups in highly deuterated proteins is presented....
nmrlearner
Journal club
0
11-24-2010 09:16 PM
[NMR paper] Fabrication of homogeneously cross-linked, functional alginate microcapsules validate
Fabrication of homogeneously cross-linked, functional alginate microcapsules validated by NMR-, CLSM- and AFM-imaging.
Related Articles Fabrication of homogeneously cross-linked, functional alginate microcapsules validated by NMR-, CLSM- and AFM-imaging.
Biomaterials. 2003 May;24(12):2083-96
Authors: Zimmermann H, Hillgärtner M, Manz B, Feilen P, Brunnenmeier F, Leinfelder U, Weber M, Cramer H, Schneider S, Hendrich C, Volke F, Zimmermann U
Cross-linked alginate microcapsules of sufficient mechanical strength can immunoisolate cells for the...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Solid state NMR measurements of conformation and conformational distributions in the
Solid state NMR measurements of conformation and conformational distributions in the membrane-bound HIV-1 fusion peptide.
Related Articles Solid state NMR measurements of conformation and conformational distributions in the membrane-bound HIV-1 fusion peptide.
J Mol Graph Model. 2001;19(1):129-35
Authors: Yang J, Parkanzky PD, Khunte BA, Canlas CG, Yang R, Gabrys CM, Weliky DP
The solid state NMR lineshape of a protein backbone carbonyl nucleus is a general diagnostic of the local conformational distribution in the vicinity of that nucleus. In...
nmrlearner
Journal club
0
11-19-2010 08:32 PM
Dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of GNNQQNY nanocry
Dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of GNNQQNY nanocrystals and amyloid fibrils.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.rsc.org-images-entities-char_z_RSClogo.gif Related Articles Dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of GNNQQNY nanocrystals and amyloid fibrils.
Phys Chem Chem Phys. 2010 Jun 14;12(22):5911-9
Authors: Debelouchina GT, Bayro MJ, van der Wel PC, Caporini MA, Barnes AB, Rosay M, Maas WE, Griffin RG
Dynamic nuclear polarization (DNP) utilizes the...
nmrlearner
Journal club
0
08-26-2010 04:41 PM
[NMR paper] Proton NMR comparison of noncovalent and covalently cross-linked complexes of cytochr
Proton NMR comparison of noncovalent and covalently cross-linked complexes of cytochrome c peroxidase with horse, tuna, and yeast ferricytochromes c.
Related Articles Proton NMR comparison of noncovalent and covalently cross-linked complexes of cytochrome c peroxidase with horse, tuna, and yeast ferricytochromes c.
Biochemistry. 1992 Apr 14;31(14):3661-70
Authors: Moench SJ, Chroni S, Lou BS, Erman JE, Satterlee JD
Proton NMR spectroscopy at 500 and 361 MHz has been used to characterize the noncovalent or electrostatic complexes of yeast...