BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-12-2013, 07:09 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,791
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The synthesis, characterization, and application of (13)c-methyl isocyanide as an NMR probe of heme protein active sites.

The synthesis, characterization, and application of (13)c-methyl isocyanide as an NMR probe of heme protein active sites.

Related Articles The synthesis, characterization, and application of (13)c-methyl isocyanide as an NMR probe of heme protein active sites.

Methods Mol Biol. 2013;987:51-9

Authors: McCullough C, Pullela PK, Im SC, Waskell L, Sem D

Abstract
The cytochromes P450 (CYPs) play a central role in a variety of important biological oxidations, such as steroid synthesis and the metabolism of xenobiotic compounds, including most drugs. Because CYPs are frequently assayed as drug targets or as anti-targets, tools that provide confirmation of active-site binding and information on binding orientation would be of great utility. Of greatest value are assays that are reasonably high throughput. Other heme proteins, too-such as the nitric oxide synthases (NOSs), with their importance in signaling, regulation of blood pressure, and involvement in the immune response-often display critical roles in the complex functions of many higher organisms, and also require improved assay methods. To this end, we have developed an analog of cyanide, with a CH-reporter group attached to make methyl isocyanide. We describe the synthesis and use of C-methyl isocyanide as a probe of both bacterial (P450cam) and membrane-bound mammalian (CYP2B4) CYPs. The C-methyl isocyanide probe can be used in a relatively high-throughput 1-D experiment to identify binders, but it can also be used to detect structural changes in the active site based on chemical shift changes, and potentially nuclear Overhauser effects between probe and inhibitor.


PMID: 23475666 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
A 2D 13C-CEST experiment for studying slowly exchanging protein systems using methyl probes: an application to protein folding
A 2D 13C-CEST experiment for studying slowly exchanging protein systems using methyl probes: an application to protein folding Abstract A 2D 13C Chemical Exchange Saturation Transfer (CEST) experiment is presented for studying slowly exchanging protein systems using methyl groups as probes. The utility of the method is first established through studies of protein L, a small protein, for which chemical exchange on the millisecond time-scale is not observed. Subsequently the approach is applied to a folding exchange reaction of a G48M mutant Fyn SH3 domain, for which only cross-peaks...
nmrlearner Journal club 0 06-16-2012 06:01 AM
Measurement of the signs of methyl 13C chemical shift differences between interconverting ground and excited protein states by R1Ï?: an application to αB-crystallin
Measurement of the signs of methyl 13C chemical shift differences between interconverting ground and excited protein states by R1Ï?: an application to αB-crystallin Abstract Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG RD) NMR spectroscopy has emerged as a powerful tool for quantifying the kinetics and thermodynamics of millisecond time-scale exchange processes involving the interconversion between a visible ground state and one or more minor, sparsely populated invisible â??excitedâ?? conformational states. Recently it has also become possible to determine atomic resolution...
nmrlearner Journal club 0 04-09-2012 01:19 AM
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supramolecular Protein Systems: Applications to the Proteasome and to the ClpP Protease
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supramolecular Protein Systems: Applications to the Proteasome and to the ClpP Protease Tomasz L. Religa, Amy M. Ruschak, Rina Rosenzweig and Lewis E. Kay http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja202259a/aop/images/medium/ja-2011-02259a_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja202259a http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/rQfCMlQFoW8
nmrlearner Journal club 0 05-20-2011 09:17 PM
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supra-Molecular Protein Systems: Applications to the Proteasome and to the ClpP Protease.
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supra-Molecular Protein Systems: Applications to the Proteasome and to the ClpP Protease. Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supra-Molecular Protein Systems: Applications to the Proteasome and to the ClpP Protease. J Am Chem Soc. 2011 May 11; Authors: Religa TL, Ruschak AM, Rosenzweig R, Kay LE Methyl groups are powerful reporters of structure, motion and function in NMR studies of supra-molecular protein assemblies. Their...
nmrlearner Journal club 0 05-12-2011 03:40 PM
[NMR paper] Two-dimensional NMR study of the heme active site structure of chloroperoxidase.
Two-dimensional NMR study of the heme active site structure of chloroperoxidase. Related Articles Two-dimensional NMR study of the heme active site structure of chloroperoxidase. J Biol Chem. 2003 Mar 7;278(10):7765-74 Authors: Wang X, Tachikawa H, Yi X, Manoj KM, Hager LP The heme active site structure of chloroperoxidase (CPO), a glycoprotein that displays versatile catalytic activities isolated from the marine mold Caldariomyces fumago, has been characterized by two-dimensional NMR spectroscopic studies. All hyperfine shifted resonances...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Protein NMR spin trapping with [methyl-13C(3)]-MNP: application to the tyrosyl radica
Protein NMR spin trapping with -MNP: application to the tyrosyl radical of equine myoglobin. Related Articles Protein NMR spin trapping with -MNP: application to the tyrosyl radical of equine myoglobin. Free Radic Biol Med. 2001 Aug 1;31(3):383-90 Authors: Bose-Basu B, DeRose EF, Chen YR, Mason RP, London RE Direct spin trapping studies of protein radical adducts are limited as a consequence of the long rotational correlation times and consequent broadening of the ESR resonances. It can be difficult to determine both the nature and number of...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] Proton NMR investigation of the heme active site structure of an engineered cytochrom
Proton NMR investigation of the heme active site structure of an engineered cytochrome c peroxidase that mimics manganese peroxidase. Related Articles Proton NMR investigation of the heme active site structure of an engineered cytochrome c peroxidase that mimics manganese peroxidase. Biochemistry. 1999 Jul 13;38(28):9146-57 Authors: Wang X, Lu Y The heme active site structure of an engineered cytochrome c peroxidase that closely mimics manganese peroxidase (MnP) has been characterized by both one- and two-dimensional NMR spectroscopy. All...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] 1H-NMR study of heme propanoate mobility in the active site of myoglobin from Galeorh
1H-NMR study of heme propanoate mobility in the active site of myoglobin from Galeorhinus japonicus. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H-NMR study of heme propanoate mobility in the active site of myoglobin from Galeorhinus japonicus. Eur J Biochem. 1990 May 20;189(3):567-73 Authors: Yamamoto Y, Inoue Y, Chûjô R, Suzuki T Time-dependent NOE studies of the C13(1) and C17(1) methylene proton resonances of the heme...
nmrlearner Journal club 0 08-21-2010 10:48 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:15 AM.


Map