The important role of structural dynamics in protein function is widely recognized. Thermal or B-factors and their anisotropy, seen in x-ray analysis of protein structures, report on the presence of atomic coordinate heterogeneity that can be attributed to motion. However, their quantitative evaluation in terms of protein dynamics by x-ray ensemble refinement remains challenging. NMR spectroscopy provides quantitative information on the amplitudes and time scales of motional processes....
[NMR paper] Using pseudocontact shifts and residual dipolar couplings as exact NMR restraints for the determination of protein structural ensembles.
Using pseudocontact shifts and residual dipolar couplings as exact NMR restraints for the determination of protein structural ensembles.
Using pseudocontact shifts and residual dipolar couplings as exact NMR restraints for the determination of protein structural ensembles.
Biochemistry. 2015 Dec 1;
Authors: Camilloni C, Vendruscolo M
Abstract
Nuclear magnetic resonance (NMR) spectroscopy provides detailed information about the struc-ture and dynamics of proteins by exploiting the conformational dependence of the magnetic...
nmrlearner
Journal club
0
12-02-2015 11:37 AM
Improvements to REDCRAFT: a software tool for simultaneous characterization of protein backbone structure and dynamics from residual dipolar couplings
Improvements to REDCRAFT: a software tool for simultaneous characterization of protein backbone structure and dynamics from residual dipolar couplings
Abstract
Within the past two decades, there has been an increase in the acquisition of residual dipolar couplings (RDC) for investigations of biomolecular structures. Their use however is still not as widely adopted as the traditional methods of structure determination by NMR, despite their potential for extending the limits in studies that examine both the structure and dynamics of biomolecules. This...
nmrlearner
Journal club
0
11-17-2014 12:48 PM
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings.
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings.
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings.
J Am Chem Soc. 2011 Apr 5;
Authors: Sgourakis NG, Lange OF, Dimaio F, Andre? I, Fitzkee NC, Rossi P, Montelione GT, Bax A, Baker D
Symmetric protein dimers, trimers, and higher-order cyclic oligomers play key roles in many biological processes. However, structural studies of oligomeric systems by solution NMR...
nmrlearner
Journal club
0
04-07-2011 09:54 PM
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings
Nikolaos G. Sgourakis, Oliver F. Lange, Frank DiMaio, Ingemar Andre?, Nicholas C. Fitzkee, Paolo Rossi, Gaetano T. Montelione, Ad Bax and David Baker
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja111318m/aop/images/medium/ja-2010-11318m_0008.gif
Journal of the American Chemical Society
DOI: 10.1021/ja111318m
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner
Journal club
0
04-06-2011 10:54 AM
Residual dipolar couplings: are multiple independent alignments always possible?
Residual dipolar couplings: are multiple independent alignments always possible?
Abstract RDCs for the 14 kDa protein hen egg-white lysozyme (HEWL) have been measured in eight different alignment media. The elongated shape and strongly positively charged surface of HEWL appear to limit the protein to four main alignment orientations. Furthermore, low levels of alignment and the proteinā??s interaction with some alignment media increases the experimental error. Together with heterogeneity across the alignment media arising from constraints on temperature, pH and ionic strength for some...
nmrlearner
Journal club
0
12-26-2010 04:43 AM
[NMR paper] Residual dipolar couplings in NMR structure analysis.
Residual dipolar couplings in NMR structure analysis.
Related Articles Residual dipolar couplings in NMR structure analysis.
Annu Rev Biophys Biomol Struct. 2004;33:387-413
Authors: Lipsitz RS, Tjandra N
Residual dipolar couplings (RDCs) have recently emerged as a new tool in nuclear magnetic resonance (NMR) with which to study macromolecular structure and function in a solution environment. RDCs are complementary to the more conventional use of NOEs to provide structural information. While NOEs are local-distance restraints, RDCs provide...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
[NMR paper] Residual dipolar couplings: synergy between NMR and structural genomics.
Residual dipolar couplings: synergy between NMR and structural genomics.
Related Articles Residual dipolar couplings: synergy between NMR and structural genomics.
J Biomol NMR. 2002 Jan;22(1):1-8
Authors: Al-Hashimi HM, Patel DJ
Structural genomics is on a quest for the structure and function of a significant fraction of gene products. Current efforts are focusing on structure determination of single-domain proteins, which can readily be targeted by X-ray crystallography, NMR spectroscopy and computational homology modeling. However,...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Protein structural motif recognition via NMR residual dipolar couplings.
Protein structural motif recognition via NMR residual dipolar couplings.
Related Articles Protein structural motif recognition via NMR residual dipolar couplings.
J Am Chem Soc. 2001 Feb 14;123(6):1222-9
Authors: Andrec M, Du P, Levy RM
NMR residual dipolar couplings have great potential to provide rapid structural information for proteins in the solution state. This information even at low resolution may be used to advantage in proteomics projects that seek to annotate large numbers of gene products for entire genomes. In this paper, we...