Related ArticlesSummation solute hydrogen bonding acidity values for hydroxyl substituted flavones determined by NMR spectroscopy.
Nat Prod Commun. 2013 Jan;8(1):85-98
Authors: Whaley WL, Okoso-amaa EM, Womack CL, Vladimirova A, Rogers LB, Risher MJ, Abraham MH
Abstract
The flavonoids are a structurally diverse class of natural products that exhibit a broad spectrum of biochemical activities. The flavones are one of the most studied flavonoid subclasses due to their presence in dietary plants and their potential to protect human cells from reactive oxygen species (ROS). Several flavone compounds also mediate beneficial actions by direct binding to protein receptors and regulatory enzymes. There is current interest in using Quantitative Structure Activity Relationships (QSARs) to guide drug development based on flavone lead structures. This approach is most informative when it involves the use of accurate physical descriptors. The Abraham summation solute hydrogen bonding acidity (A) is a descriptor in the general solvation equation. It defines the tendency of a molecule to act as a hydrogen bond donor, or acid, when surrounded by solvent molecules that are hydrogen bonding acceptors, or bases. As a linear free energy relationship, it is useful for predicting the absorption and uptake of drug molecules. A previously published method, involving nuclear magnetic resonance (NMR) spectroscopy, was used to evaluate A for the monohydroxyflavones (MHFs). Values of A ranged from 0.02, for 5-hydroxyflavone, to 0.69 for 4'-hydroxyflavone. The ability to examine separate NMR signals for individual hydroxyl groups allowed the investigation of intramolecular interactions between functional groups. The value of A for the position 7 hydroxyl group of 7-hydroxyflavone was 0.67. The addition of a position 5 hydroxyl group (in 5,7-dihydroxyflavone) increased the value of A for the position 7 hydroxyl group to 0.76. Values of A for MHFs were also calculated by the program ACD-Absolve and these agreed well with values measured by NMR. These results should facilitate more accurate estimation of the values of A for structurally complex flavones with pharmacological activities.
[NMR paper] Hydrogen bonding in Alzheimer's amyloid-? fibrils probed by 15N{17O} REAPDOR solid-state NMR spectroscopy.
Hydrogen bonding in Alzheimer's amyloid-? fibrils probed by 15N{17O} REAPDOR solid-state NMR spectroscopy.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Hydrogen bonding in Alzheimer's amyloid-? fibrils probed by 15N{17O} REAPDOR solid-state NMR spectroscopy.
Angew Chem Int Ed Engl. 2012 Oct 8;51(41):10289-92
Authors: Antzutkin ON, Iuga D, Filippov AV, Kelly RT, Becker-Baldus J, Brown SP, Dupree R
PMID: 22976560
nmrlearner
Journal club
0
02-16-2013 08:00 PM
[NMR paper] Solution (1)H NMR study of the influence of distal hydrogen bonding and N terminus ac
Solution (1)H NMR study of the influence of distal hydrogen bonding and N terminus acetylation on the active site electronic and molecular structure of Aplysia limacina cyanomet myoglobin.
Related Articles Solution (1)H NMR study of the influence of distal hydrogen bonding and N terminus acetylation on the active site electronic and molecular structure of Aplysia limacina cyanomet myoglobin.
J Biol Chem. 2000 Jan 14;275(2):742-51
Authors: Nguyen BD, Xia Z, Cutruzzolá F, Allocatelli CT, Brunori M, La Mar GN
The sea hare Aplysia limacina...
nmrlearner
Journal club
0
11-18-2010 09:15 PM
[NMR paper] 1H NMR investigation of the distal hydrogen bonding network and ligand tilt in the cy
1H NMR investigation of the distal hydrogen bonding network and ligand tilt in the cyanomet complex of oxygen-avid Ascaris suum hemoglobin.
Related Articles 1H NMR investigation of the distal hydrogen bonding network and ligand tilt in the cyanomet complex of oxygen-avid Ascaris suum hemoglobin.
J Biol Chem. 1999 Nov 5;274(45):31819-26
Authors: Xia Z, Zhang W, Nguyen BD, Mar GN, Kloek AP, Goldberg DE
The O(2)-avid hemoglobin from the parasitic nematode Ascaris suum exhibits one of the slowest known O(2) off rates. Solution (1)H NMR has been...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
[NMR paper] NMR analysis of the hydrogen bonding interactions of the RNA-binding domains of the D
NMR analysis of the hydrogen bonding interactions of the RNA-binding domains of the Drosophila sex-lethal protein with target RNA fragments with site-specific uridine substitutions.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-oxfordjournals_final_free.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles NMR analysis of the hydrogen bonding interactions of the RNA-binding domains of the Drosophila sex-lethal protein with...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] NMR analysis of the hydrogen bonding interactions of the RNA-binding domains of the D
NMR analysis of the hydrogen bonding interactions of the RNA-binding domains of the Drosophila sex-lethal protein with target RNA fragments with site-specific uridine substitutions.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-oxfordjournals_final_free.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles NMR analysis of the hydrogen bonding interactions of the RNA-binding domains of the Drosophila sex-lethal protein with...
nmrlearner
Journal club
0
08-22-2010 03:03 PM
[NMR paper] NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins.
NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins.
Related Articles NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins.
J Biomol NMR. 1992 Sep;2(5):447-65
Authors: Liepinsh E, Otting G, Wüthrich K
Hydroxyl groups of serine and threonine, and to some extent also tyrosine are usually located on or near the surface of proteins. NMR observations of the hydroxyl protons is therefore of interest to support investigations of the protein surface in solution, and knowledge of the...
nmrlearner
Journal club
0
08-21-2010 11:45 PM
[NMR paper] Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy:
Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy: use of the INEPT experiment to follow individual amides in detergent-solubilized M13 coat protein.
Related Articles Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy: use of the INEPT experiment to follow individual amides in detergent-solubilized M13 coat protein.
Biochemistry. 1990 Jul 3;29(26):6303-13
Authors: Henry GD, Sykes BD
The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the...
nmrlearner
Journal club
0
08-21-2010 11:04 PM
Hydrogen-bonding potential to refine NMR structure
An Empirical Backbone-Backbone Hydrogen-Bonding Potential in Proteins and Its Applications to NMR Structure Refinement and Validation
Alexander Grishaev and Ad Bax
J. Am. Chem. Soc.; 2004; 126(23) pp 7281 - 7292
http://pubs.acs.org./isubscribe/journals/jacsat/126/i23/figures/ja0319994n00001.gif
Abstract:
A new multidimensional potential is described that encodes for the relative spatial arrangement of the peptidyl backbone units as observed within a large database of high-resolution X-ray structures. The detailed description afforded by such an analysis provides an opportunity to study...