Dmitry M. Korzhnev, Philipp Neudecker, Anthony Mittermaier, Vladislav Yu. Orekhov, and Lewis E. Kay*
Contribution from the Departments of Medical Genetics, Biochemistry, and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada, and Swedish NMR Center at Göteborg University, Box 465, 405 30 Göteborg, Sweden
J. Am. Chem. Soc.; 2005; 127(44) pp 15602 - 15611;
Abstract:
The three-site exchange folding reaction of an 15N-labeled, highly deuterated Gly48Met mutant of the Fyn SH3 domain has been characterized at 25 C using a suite of six CPMG-type relaxation dispersion experiments that measure exchange contributions to backbone 1H and 15N transverse relaxation rates in proteins. It is shown that this suite of experiments allows the extraction of all the parameters of this multisite exchange process in a robust manner, including chemical shift differences between exchanging states, from a data set recorded at only a single temperature. The populations of the exchanging folded, intermediate, and unfolded states that are fit are 94, 0.7, and 5%, respectively. Despite the small fraction of the intermediate, structural information is obtained for this state that is consistent with the picture of SH3 domain folding that has emerged from other studies. Taken together, the six dispersion experiments facilitate the complete reconstruction of 1H-15N correlation spectra for the unfolded and intermediate states that are "invisible" in even the most sensitive of NMR experiments.
Did you find this post helpful? |
Similar Threads
Thread
Thread Starter
Forum
Replies
Last Post
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain 1H Probes
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain 1H Probes
Alexandar L. Hansen, Patrik Lundstrom, Algirdas Velyvis and Lewis E. Kay
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja210711v/aop/images/medium/ja-2011-10711v_0008.gif
Journal of the American Chemical Society
DOI: 10.1021/ja210711v
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/jaMjjnA_QTw
nmrlearner
Journal club
0
02-03-2012 09:50 AM
Microsecond Time-Scale Conformational Exchange in Proteins: Using Long Molecular Dynamics Trajectory To Simulate NMR Relaxation Dispersion Data
Microsecond Time-Scale Conformational Exchange in Proteins: Using Long Molecular Dynamics Trajectory To Simulate NMR Relaxation Dispersion Data
Yi Xue, Joshua M. Ward, Tairan Yuwen, Ivan S. Podkorytov and Nikolai R. Skrynnikov
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja206442c/aop/images/medium/ja-2011-06442c_0001.gif
Journal of the American Chemical Society
DOI: 10.1021/ja206442c
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/NvRRKHU2H3k
nmrlearner
Journal club
0
01-28-2012 05:27 AM
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups
Abstract A new pulse sequence is presented for the measurement of relaxation dispersion profiles quantifying millisecond time-scale exchange dynamics of side-chain carbonyl groups in uniformly 13C labeled proteins. The methodology has been tested using the 87-residue colicin E7 immunity protein, Im7, which is known to fold via a partially structured low populated intermediate that interconverts with the folded, ground state on the millisecond time-scale....
nmrlearner
Journal club
0
06-20-2011 03:31 PM
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups.
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups.
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups.
J Biomol NMR. 2011 Jun 18;
Authors: Hansen AL, Kay LE
A new pulse sequence is presented for the measurement of relaxation dispersion profiles quantifying millisecond time-scale exchange dynamics of side-chain carbonyl groups in uniformly (13)C labeled proteins. The methodology has...
nmrlearner
Journal club
0
06-18-2011 01:10 PM
AUTOBA: Automation of backbone assignment from HN(C)N suite of experiments
AUTOBA: Automation of backbone assignment from HN(C)N suite of experiments
Abstract Development of efficient strategies and automation represent important milestones of progress in rapid structure determination efforts in proteomics research. In this context, we present here an efficient algorithm named as AUTOBA (Automatic Backbone Assignment) designed to automate the assignment protocol based on HN(C)N suite of experiments. Depending upon the spectral dispersion, the user can record 2D or 3D versions of the experiments for assignment. The algorithm uses as inputs: (i) protein primary...
5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion
5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion
Abstract Two novel 5D NMR experiments (CACONCACO, NCOCANCO) for backbone assignment of disordered proteins are presented. The pulse sequences exploit relaxation properties of the unstructured proteins and combine the advantages of 13C-direct detection, non-uniform sampling, and longitudinal relaxation optimization to maximize the achievable resolution and minimize the experimental time. The pulse sequences were successfully tested on the sample of partially disordered delta...
nmrlearner
Journal club
0
03-22-2011 07:32 PM
Can Enzyme Engineering Benefit from the Modulation of Protein Motions? Lessons Learned from NMR Relaxation Dispersion Experiments.
Can Enzyme Engineering Benefit from the Modulation of Protein Motions? Lessons Learned from NMR Relaxation Dispersion Experiments.
Can Enzyme Engineering Benefit from the Modulation of Protein Motions? Lessons Learned from NMR Relaxation Dispersion Experiments.
Protein Pept Lett. 2011 Jan 11;
Authors:
Despite impressive progress in protein engineering and design, our ability to create new and efficient enzyme activities remains a laborious and time-consuming endeavor. In the past few years, intricate combinations of rational mutagenesis, directed...