BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 12-07-2011, 10:22 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Sugar-to-base correlation in nucleic acids with a 5D APSY-HCNCH or two 3D APSY-HCN experiments

Sugar-to-base correlation in nucleic acids with a 5D APSY-HCNCH or two 3D APSY-HCN experiments


Abstract A five-dimensional (5D) APSY (automated projection spectroscopy) HCNCH experiment is presented, which allows unambiguous correlation of sugar to base nuclei in nucleic acids. The pulse sequence uses multiple quantum (MQ) evolution which enables long constant-time evolution periods in all dimensions, an improvement that can also benefit non-APSY applications. Applied with an RNA with 23 nucleotides the 5D APSY-HCNCH experiment produced a complete and highly precise 5D chemical shift list within 1.5 h. Alternatively, and for molecules where the out-and-stay 5D experiment sensitivity is not sufficient, a set of out-and-back 3D APSY-HCN experiments is proposed: an intra-base (3D APSY-b-HCN) experiment in an MQ or in a TROSY version, and an MQ sugar-to-base (3D APSY-s-HCN) experiment. The two 3D peak lists require subsequent matching via the N1/9 chemical shift values to one 5D peak list. Optimization of the 3D APSY experiments for maximal precision in the N1/9 dimension allowed matching of all 15N chemical shift values contained in both 3D peak lists. The precise 5D chemical shift correlation lists resulting from the 5D experiment or a pair of 3D experiments also provide a valuable basis for subsequent connection to chemical shifts derived with other experiments.
  • Content Type Journal Article
  • Category Article
  • Pages 1-10
  • DOI 10.1007/s10858-011-9588-z
  • Authors
    • Barbara Krähenbühl, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
    • Daniela Hofmann, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
    • Christophe Maris, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
    • Gerhard Wider, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland

Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Measurement of 1Hâ??15N and 1Hâ??13C residual dipolar couplings in nucleic acids from TROSY intensities
Measurement of 1Hâ??15N and 1Hâ??13C residual dipolar couplings in nucleic acids from TROSY intensities Abstract Analogous to the recently introduced ARTSY method for measurement of one-bond 1Hâ??15N residual dipolar couplings (RDCs) in large perdeuterated proteins, we introduce methods for measurement of base 13Câ??1H and 15Nâ??1H RDCs in protonated nucleic acids. Measurements are based on quantitative analysis of intensities in 1Hâ??15N and 13Câ??1H TROSY-HSQC spectra, and are illustrated for a 71-nucleotide adenine riboswitch. Results compare favorably with those of conventional...
nmrlearner Journal club 0 09-30-2011 08:01 PM
4D APSY-HBCB(CG)CDHD experiment for automated assignment of aromatic amino acid side chains in proteins
4D APSY-HBCB(CG)CDHD experiment for automated assignment of aromatic amino acid side chains in proteins Abstract A four-dimensional (4D) APSY (automated projection spectroscopy)-HBCB(CG)CDHD experiment is presented. This 4D experiment correlates aromatic with aliphatic carbon and proton resonances from the same amino acid side chain of proteins in aqueous solution. It thus allows unambiguous sequence-specific assignment of aromatic amino acid ring signals based on backbone assignments. Compared to conventional 2D approaches, the inclusion of evolution periods on 1Hβ and 13Cδ...
nmrlearner Journal club 0 09-30-2011 08:01 PM
[NMR paper] Recommendations for the presentation of NMR structures of proteins and nucleic acids-
Recommendations for the presentation of NMR structures of proteins and nucleic acids--IUPAC-IUBMB-IUPAB Inter-Union Task Group on the standardization of data bases of protein and nucleic acid structures determined by NMR spectroscopy. Related Articles Recommendations for the presentation of NMR structures of proteins and nucleic acids--IUPAC-IUBMB-IUPAB Inter-Union Task Group on the standardization of data bases of protein and nucleic acid structures determined by NMR spectroscopy. Eur J Biochem. 1998 Aug 15;256(1):1-15 Authors: Markley JL, Bax A, Arata...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Recommendations for the presentation of NMR structures of proteins and nucleic acids.
Recommendations for the presentation of NMR structures of proteins and nucleic acids. IUPAC-IUBMB-IUPAB Inter-Union Task Group on the Standardization of Data Bases of Protein and Nucleic Acid Structures Determined by NMR Spectroscopy. Related Articles Recommendations for the presentation of NMR structures of proteins and nucleic acids. IUPAC-IUBMB-IUPAB Inter-Union Task Group on the Standardization of Data Bases of Protein and Nucleic Acid Structures Determined by NMR Spectroscopy. J Biomol NMR. 1998 Jul;12(1):1-23 Authors: Markley JL, Bax A, Arata Y,...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Dynamic properties of nucleic acids in biosupramolecular systems, as studied by 31P N
Dynamic properties of nucleic acids in biosupramolecular systems, as studied by 31P NMR. Related Articles Dynamic properties of nucleic acids in biosupramolecular systems, as studied by 31P NMR. J Biochem. 1994 Feb;115(2):270-8 Authors: Odahara T, Nishimoto S, Katsutani N, Kyogoku Y, Morimoto Y, Matsushiro A, Akutsu H The dynamic properties of nucleic acids in five different types of intact supramolecular systems, namely, chicken erythrocyte chromatin, the wild type and a deletion mutant of the lambda phage, lipid-containing phage PM2, and...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Dynamic properties of nucleic acids in biosupramolecular systems, as studied by 31P N
Dynamic properties of nucleic acids in biosupramolecular systems, as studied by 31P NMR. Related Articles Dynamic properties of nucleic acids in biosupramolecular systems, as studied by 31P NMR. J Biochem. 1994 Feb;115(2):270-8 Authors: Odahara T, Nishimoto S, Katsutani N, Kyogoku Y, Morimoto Y, Matsushiro A, Akutsu H The dynamic properties of nucleic acids in five different types of intact supramolecular systems, namely, chicken erythrocyte chromatin, the wild type and a deletion mutant of the lambda phage, lipid-containing phage PM2, and...
nmrlearner Journal club 0 08-22-2010 03:33 AM
Use of chemical shifts for structural studies of nucleic acids
Use of chemical shifts for structural studies of nucleic acids Publication year: 2010 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 1 February 2010</br> Sik Lok, Lam , Lai Man, Chi</br> More...
nmrlearner Journal club 0 08-16-2010 03:50 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:18 PM.


Map