Related ArticlesStudying excited states of proteins by NMR spectroscopy.
Nat Struct Biol. 2001 Nov;8(11):932-5
Authors: Mulder FA, Mittermaier A, Hon B, Dahlquist FW, Kay LE
Protein structure is inherently dynamic, with function often predicated on excursions from low to higher energy conformations. For example, X-ray studies of a cavity mutant of T4 lysozyme, L99A, show that the cavity is sterically inaccessible to ligand, yet the protein is able to bind substituted benzenes rapidly. We have used novel relaxation dispersion NMR techniques to kinetically and thermodynamically characterize a transition between a highly populated (97%, 25 degrees C) ground state conformation and an excited state that is 2.0 kcal mol(-1) higher in free energy. A temperature-dependent study of the rates of interconversion between ground and excited states allows the separation of the free energy change into enthalpic (Delta H = 7.1 kcal mol(-1)) and entropic (T Delta S = 5.1 kcal mol(-1), 25 degrees C) components. The residues involved cluster about the cavity, providing evidence that the excited state facilitates ligand entry.
The Use of Residual Dipolar Coupling in Studying Proteins by NMR.
The Use of Residual Dipolar Coupling in Studying Proteins by NMR.
The Use of Residual Dipolar Coupling in Studying Proteins by NMR.
Top Curr Chem. 2011 Sep 28;
Authors: Chen K, Tjandra N
Abstract
The development of residual dipolar coupling (RDC) in protein NMR spectroscopy, over a decade ago, has become a useful and almost routine tool for accurate protein solution structure determination. RDCs provide orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. Its measurement requires a...
nmrlearner
Journal club
0
09-30-2011 06:00 AM
The Use of Residual Dipolar Coupling in Studying Proteins by NMR.
The Use of Residual Dipolar Coupling in Studying Proteins by NMR.
The Use of Residual Dipolar Coupling in Studying Proteins by NMR.
Top Curr Chem. 2011 Sep 28;
Authors: Chen K, Tjandra N
Abstract
The development of residual dipolar coupling (RDC) in protein NMR spectroscopy, over a decade ago, has become a useful and almost routine tool for accurate protein solution structure determination. RDCs provide orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. Its measurement requires a...
nmrlearner
Journal club
0
09-30-2011 05:59 AM
Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy.
Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy.
Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy.
Biochim Biophys Acta. 2011 Aug 3;
Authors: Gustavsson M, Traaseth NJ, Veglia G
In this paper, we analyzed the ground and excited states of phospholamban (PLN), a membrane protein that regulates sarcoplasmic reticulum calcium ATPase (SERCA), in different membrane mimetic environments....
[NMR paper] Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC
Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments.
Related Articles Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments.
J Am Chem Soc. 2002 Oct 16;124(41):12352-60
Authors: Skrynnikov NR, Dahlquist FW, Kay LE
Carr-Purcell-Meiboom-Gill (CPMG) relaxation measurements employing trains of 180 degrees pulses with variable pulse spacing provide valuable information about systems undergoing millisecond-time-scale chemical exchange. Fits of the CPMG relaxation...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] General framework for studying the dynamics of folded and nonfolded proteins by NMR r
General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation.
Related Articles General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation.
J Am Chem Soc. 2002 Apr 24;124(16):4522-34
Authors: Prompers JJ, Brüschweiler R
A general framework is presented for the interpretation of NMR relaxation data of proteins. The method, termed isotropic reorientational eigenmode dynamics (iRED), relies on a principal component...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively 13C labeled samples
Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively 13C labeled samples
Patrik Lundström, D. Flemming Hansen and Lewis E. Kay
Journal of Biomolecular NMR; 2008; 42(1); pp 35 - 47
Abstract: Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion nuclear magnetic resonance (NMR) spectroscopy has emerged as a powerful method for quantifying chemical shifts of excited protein states. For many applications of the technique that involve the measurement of relaxation rates of carbon...
Abe
Journal club
0
09-21-2008 11:36 PM
Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states
Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states
D. Flemming Hansen, Pramodh Vallurupalli and Lewis E. Kay
Journal of Biomolecular NMR; 2008; 41(3); pp 113 - 120
Abstract:
Currently the main focus of structural biology is the determination of static three-dimensional representations of biomolecules that for the most part correspond to low energy (ground state) conformations. However, it is becoming increasingly well recognized that higher energy structures often play important roles in function as well. Because these conformers...