Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell [Biophysics and Computational Biology]
Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell [Biophysics and Computational Biology]
Cyril Charlier, T. Reid Alderson, Joseph M. Courtney, Jinfa Ying, Philip Anfinrud, Adriaan Bax...
Date: 2018-05-01
In general, small proteins rapidly fold on the timescale of milliseconds or less. For proteins with a substantial volume difference between the folded and unfolded states, their thermodynamic equilibrium can be altered by varying the hydrostatic pressure. Using a pressure-sensitized mutant of ubiquitin, we demonstrate that rapidly switching the pressure... Read More
PNAS:
Number: 18
Volume: 115
Did you find this post helpful? |
Similar Threads
Thread
Thread Starter
Forum
Replies
Last Post
[NMR paper] Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell.
Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell.
Related Articles Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell.
Proc Natl Acad Sci U S A. 2018 Apr 16;:
Authors: Charlier C, Alderson TR, Courtney JM, Ying J, Anfinrud P, Bax A
Abstract
In general, small proteins rapidly fold on the timescale of milliseconds or less. For proteins with a substantial volume difference between the folded...
nmrlearner
Journal club
0
04-19-2018 01:52 PM
Combining DNP NMR with segmental and specific labeling to study a yeast prion protein strain that is not parallel in-register [Biophysics and Computational Biology]
Combining DNP NMR with segmental and specific labeling to study a yeast prion protein strain that is not parallel in-register
Kendra K. Frederick, Vladimir K. Michaelis, Marc A. Caporini, Loren B. Andreas, Galia T. Debelouchina, Robert G. Griffin, Susan Lindquist...
Date: 2017-04-04
The yeast prion protein Sup35NM is a self-propagating amyloid. Despite intense study, there is no consensus on the organization of monomers within Sup35NM fibrils. Some studies point to a ?-helical arrangement, whereas others suggest a parallel in-register organization. Intermolecular contacts are often...
Fluorine-19 NMR and computational quantification of isoflurane binding to the voltage-gated sodium channel NaChBac [Biophysics and Computational Biology]
Fluorine-19 NMR and computational quantification of isoflurane binding to the voltage-gated sodium channel NaChBac
Monica N. Kinde, Vasyl Bondarenko, Daniele Granata, Weiming Bu, Kimberly C. Grasty, Patrick J. Loll, Vincenzo Carnevale, Michael L. Klein, Roderic G. Eckenhoff, Pei Tang, Yan Xu...
Date: 2016-11-29
Voltage-gated sodium channels (NaV) play an important role in general anesthesia. Electrophysiology measurements suggest that volatile anesthetics such as isoflurane inhibit NaV by stabilizing the inactivated state or altering the inactivation kinetics. Recent computational...
nmrlearner
Journal club
0
11-29-2016 09:02 PM
Protein NMR structures at >=100-kHz MAS [Biophysics and Computational Biology]
Protein NMR structures at >=100-kHz MAS
Andreas, L. B., Jaudzems, K., Stanek, J., Lalli, D., Bertarello, A., Le Marchand, T., Cala-De Paepe, D., Kotelovica, S., Akopjana, I., Knott, B., Wegner, S., Engelke, F., Lesage, A., Emsley, L., Tars, K., Herrmann, T., Pintacuda, G....
Date: 2016-08-16
Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that,...
nmrlearner
Journal club
0
08-16-2016 07:38 PM
Protein dynamics from X-ray and NMR [Biophysics and Computational Biology]
Protein dynamics from X-ray and NMR
Fenwick, R. B., van den Bedem, H., Fraser, J. S., Wright, P. E....
Date: 2014-01-28
Detailed descriptions of atomic coordinates and motions are required for an understanding of protein dynamics and their relation to molecular recognition, catalytic function, and allostery. Historically, NMR relaxation measurements have played a dominant role in the determination of the amplitudes and timescales (picosecond–nanosecond) of bond vector fluctuations, whereas high-resolution X-ray... Read More
PNAS:
Number: 4
nmrlearner
Journal club
0
01-29-2014 12:50 AM
[NMR paper] Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein.
Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein.
Related Articles Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein.
Chembiochem. 2013 Jun 28;
Authors: Roche J, Ying J, Maltsev AS, Bax A
Abstract
The impact of pressure on the backbone (15) N, (1) H and (13) C chemical shifts in N-terminally acetylated ?-synuclein has been evaluated over a pressure range 1-2500 bar. Even while the chemical shifts fall very close...
nmrlearner
Journal club
0
07-03-2013 01:46 PM
NMR and functional study of eIF4E3 [Biophysics and Computational Biology]
NMR and functional study of eIF4E3
Osborne, M. J., Volpon, L., Kornblatt, J. A., Culjkovic-Kraljacic, B., Baguet, A., Borden, K. L. B....
Date: 2013-03-05
Recognition of the methyl-7-guanosine (m7G) cap structure on mRNA is an essential feature of mRNA metabolism and thus gene expression. Eukaryotic translation initiation factor 4E (eIF4E) promotes translation, mRNA export, proliferation, and oncogenic transformation dependent on this cap-binding activity. eIF4E–cap recognition is mediated via complementary charge interactions of the positively... Read More
PNAS:
Number: 10