BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-14-2012, 08:07 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default A study on the influence of fast amide exchange on the accuracy of 15N relaxation rate constants

A study on the influence of fast amide exchange on the accuracy of 15N relaxation rate constants


Abstract 15N relaxation rates of amide moieties provide insight both into global as well as local backbone dynamics of peptides and proteins. As the differences in the relaxation rates in general are small, their accurate determination is of prime importance. One potential source of error is fast amide exchange. It is well known that in its presence the effects of saturation transfer and H/D exchange may result in erroneous apparent relaxation rates R 1 and R 2. Here, the extent of these errors is rigorously examined. Theoretical considerations reveal that even when saturation effects are absent, H/D exchange will easily result in significant deviations from the true values. In particular overestimations of up to 10 % in R 1 and up to 5 % in R 2 are observed. An alternative scheme for fitting the relaxation data to the corresponding exponentials is presented that in the best cases not only delivers more accurate relaxation rates but also allows extracting estimates for the exchange rates. The theoretical computations were tested and verified for the case of ubiquitin.

  • Content Type Journal Article
  • Category Article
  • Pages 1-12
  • DOI 10.1007/s10858-012-9682-x
  • Authors
    • Simon Jurt, Institute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
    • Oliver Zerbe, Institute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland


Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Mathematical treatment of adiabatic fast passage pulses for the computation of nuclear spin relaxation rates in proteins with conformational exchange
Mathematical treatment of adiabatic fast passage pulses for the computation of nuclear spin relaxation rates in proteins with conformational exchange Abstract Although originally designed for broadband inversion and decoupling in NMR spectroscopy, recent methodological developments have introduced adiabatic fast passage (AFP) pulses into the field of protein dynamics. AFP pulses employ a frequency sweep, and have not only superior inversion properties with respect to offset effects, but they are also easily implemented into a pulse sequence. As magnetization is dragged from the +z to...
nmrlearner Journal club 0 09-30-2011 08:01 PM
Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range
Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range Abstract The mechanism of signal transduction mediated by G protein-coupled receptors is a subject of intense research in pharmacological and structural biology. Ligand association to the receptor constitutes a critical event in the activation process. Solution-state NMR can be amenable to high-resolution structure determination of agonist molecules in their...
nmrlearner Journal club 0 06-25-2011 04:12 AM
How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar Cαâ??Câ?²/HNâ??N cross-correlated relaxation
How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar Cαâ??Câ?²/HNâ??N cross-correlated relaxation Abstract Highly precise and accurate measurements of very small NMR cross-correlated relaxation rates, namely those between protein HiNâ??Ni and Ciâ??1αâ??Ciâ??1â?² dipoles, are demonstrated with an error of 0.03 sâ??1 for GB3. Because the projection angles between the two dipole vectors are very close to the magic angle the rates range only from â??0.2 to +0.2 sâ??1. Small changes of the average vector orientations have a dramatic impact on the relative values....
nmrlearner Journal club 0 06-06-2011 12:53 AM
How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar C(?)-C'/H (N)-N cross-correlated relaxation.
How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar C(?)-C'/H (N)-N cross-correlated relaxation. How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar C(?)-C'/H (N)-N cross-correlated relaxation. J Biomol NMR. 2011 Jun 3; Authors: Vögeli B Highly precise and accurate measurements of very small NMR cross-correlated relaxation rates, namely those between protein H (i) (N) -N(i) and C (i-1) (?) -C(i-1)' dipoles, are demonstrated with an error of 0.03*s(-1) for GB3. Because the projection angles...
nmrlearner Journal club 0 06-04-2011 11:26 AM
[NMR paper] Influence of internal dynamics on accuracy of protein NMR structures: derivation of r
Influence of internal dynamics on accuracy of protein NMR structures: derivation of realistic model distance data from a long molecular dynamics trajectory. Related Articles Influence of internal dynamics on accuracy of protein NMR structures: derivation of realistic model distance data from a long molecular dynamics trajectory. J Mol Biol. 1999 Jan 15;285(2):727-40 Authors: Schneider TR, Brünger AT, Nilges M In order to study the effect of internal dynamics on the accuracy of NMR structures in detail, we generated NOE distance data from a...
nmrlearner Journal club 0 11-18-2010 07:05 PM
[NMR paper] A two-dimensional NMR study of exchange behavior of amide hydrogens in a lysozyme der
A two-dimensional NMR study of exchange behavior of amide hydrogens in a lysozyme derivative with an extra cross-link between Glu35 and Trp108--quenching of cooperative fluctuations and effects on the protein stability. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles A two-dimensional NMR study of exchange behavior of amide hydrogens in a lysozyme derivative with an extra cross-link between Glu35 and Trp108--quenching of cooperative fluctuations and effects on the protein...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] A two-dimensional NMR study of exchange behavior of amide hydrogens in a lysozyme der
A two-dimensional NMR study of exchange behavior of amide hydrogens in a lysozyme derivative with an extra cross-link between Glu35 and Trp108--quenching of cooperative fluctuations and effects on the protein stability. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles A two-dimensional NMR study of exchange behavior of amide hydrogens in a lysozyme derivative with an extra cross-link between Glu35 and Trp108--quenching of cooperative fluctuations and effects on the protein...
nmrlearner Journal club 0 08-22-2010 03:03 PM
15N SOFAST-HMQC to study fast H-D exchange
Very Fast Two-Dimensional NMR Spectroscopy for Real-Time Investigation of Dynamic Events in Proteins on the Time Scale of Seconds Paul Schanda and Bernhard Brutscher J. Am. Chem. Soc.; 2005; 127(22) pp 8014 - 8015 http://pubs.acs.org/isubscribe/journals/jacsat/127/i22/figures/ja051306en00001.gif Abstract: We demonstrate for different protein samples that 2D 1H-15N correlation NMR spectra can be recorded in a few seconds of acquisition time using a new band-selective optimized flip-angle short-transient heteronuclear multiple quantum coherence experiment. This has enabled us to...
nmrlearner Journal club 0 06-21-2005 06:21 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:57 PM.


Map