A Novel Domain Assembly Routine for Creating Full-Length Models of Membrane Proteins from Known Domain Structures
A Novel Domain Assembly Routine for Creating Full-Length Models of Membrane Proteins from Known Domain Structures
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.7b00995/20171211/images/medium/bi-2017-00995a_0005.gif
Biochemistry
DOI: 10.1021/acs.biochem.7b00995
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/IYVe61xDFY0
More...
nmrlearner
Journal club
0
12-12-2017 02:12 AM
[NMR paper] Highly Ordered Self-Assembly of Native Proteins into 1D, 2D, and 3D Structures Modulated by the Tether Length of Assembly-Inducing Ligands
Highly Ordered Self-Assembly of Native Proteins into 1D, 2D, and 3D Structures Modulated by the Tether Length of Assembly-Inducing Ligands
In nature, proteins are organized into highly ordered self-assembled structures with various morphologies and dimensions. In their Communication (DOI: 10.1002/anie.201703052), Y. Ma, G. Chen, and co-workers report the fabrication of protein assemblies by using native protein LecA as a building block through sugar–protein interactions and rhodamine dimerization. The morphologies and dimensions of the protein assemblies can be controlled by the length...
nmrlearner
Journal club
0
07-19-2017 01:32 PM
[NMR paper] Combining NMR and EPR to Determine Structures of Large RNAs and Protein-RNA Complexes in Solution.
Combining NMR and EPR to Determine Structures of Large RNAs and Protein-RNA Complexes in Solution.
Related Articles Combining NMR and EPR to Determine Structures of Large RNAs and Protein-RNA Complexes in Solution.
Methods Enzymol. 2015;558:279-331
Authors: Duss O, Yulikov M, Allain FH, Jeschke G
Abstract
Although functional significance of large noncoding RNAs and their complexes with proteins is well recognized, structural information for this class of systems is very scarce. Their inherent flexibility causes problems in...
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA.
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA.
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA.
J Am Chem Soc. 2011 Mar 1;
Authors: Renault M, Bos MP, Tommassen J, Baldus M
Multidomain proteins constitute a large part of prokaryotic and eukaryotic proteomes and play fundamental roles in various physiological processes. However, their structural characterization is challenging because of their large size and...
nmrlearner
Journal club
0
03-03-2011 12:34 PM
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA
Marie Renault, Martine P. Bos, Jan Tommassen and Marc Baldus
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja109469c/aop/images/medium/ja-2010-09469c_0004.gif
Journal of the American Chemical Society
DOI: 10.1021/ja109469c
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/9XN1qiW-S-I
nmrlearner
Journal club
0
03-02-2011 02:01 AM
[NMR paper] Determining the structures of large proteins and protein complexes by NMR.
Determining the structures of large proteins and protein complexes by NMR.
Related Articles Determining the structures of large proteins and protein complexes by NMR.
Trends Biotechnol. 1998 Jan;16(1):22-34
Authors: Clore GM, Gronenborn AM
Recent advances in multidimensional NMR methodology to obtain 1H, 15N and 13C resonance assignments, interproton-distance and torsion-angle restraints, and restraints that characterize long-range order have, coupled with new methods of structure refinement, permitted solution structure of proteins in excess...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
Module 1.0 - domain orientation with RDC data
Module 1.0 - interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings.
Download page
Manual
Reference
Program description from its website: