BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-29-2017, 01:33 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structureand Dynamics of an Intrinsically DisorderedProtein Region That Partially Folds upon Binding by Chemical-ExchangeNMR

Structureand Dynamics of an Intrinsically DisorderedProtein Region That Partially Folds upon Binding by Chemical-ExchangeNMR

Cyril Charlier, Guillaume Bouvignies, Philippe Pelupessy, Astrid Walrant, Rodrigue Marquant, Mikhail Kozlov, Pablo De Ioannes, Nicolas Bolik-Coulon, Sandrine Sagan, Patricia Cortes, Aneel K. Aggarwal, Ludovic Carlier and Fabien Ferrage



Journal of the American Chemical Society
DOI: 10.1021/jacs.7b05823




Source: Journal of the American Chemical Society
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Structure and dynamics of an intrinsically disordered protein region that partially folds upon binding by chemical-exchange NMR.
Structure and dynamics of an intrinsically disordered protein region that partially folds upon binding by chemical-exchange NMR. Related Articles Structure and dynamics of an intrinsically disordered protein region that partially folds upon binding by chemical-exchange NMR. J Am Chem Soc. 2017 Aug 07;: Authors: Charlier C, Bouvignies G, Pelupessy P, Walrant A, Marquant R, Kozlov M, De Ioannes P, Bolik-Coulon N, Sagan S, Cortes P, Aggarwal AK, Carlier L, Ferrage F Abstract Many intrinsically disordered proteins (IDPs) and protein...
nmrlearner Journal club 0 08-07-2017 07:31 PM
Structureand Dynamics of the Huntingtin Exon-1N-Terminus: A*Solution NMR Perspective
Structureand Dynamics of the Huntingtin Exon-1N-Terminus: A*Solution NMR Perspective Maria Baias, Pieter E. S. Smith, Koning Shen, Lukasz A. Joachimiak, Szymon Z?erko, Wiktor Koz?min?ski, Judith Frydman and Lucio Frydman http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.6b10893/20170113/images/medium/ja-2016-108934_0011.gif Journal of the American Chemical Society DOI: 10.1021/jacs.6b10893 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/6vVAqMsGYCM
nmrlearner Journal club 0 01-14-2017 06:24 AM
[NMR paper] Characterization of the conformational preference and dynamics of the intrinsically disordered N-terminal region of beclin 1 by NMR spectroscopy.
Characterization of the conformational preference and dynamics of the intrinsically disordered N-terminal region of beclin 1 by NMR spectroscopy. Related Articles Characterization of the conformational preference and dynamics of the intrinsically disordered N-terminal region of beclin 1 by NMR spectroscopy. Biochim Biophys Acta. 2016 Jun 8; Authors: Yao S, Lee EF, Pettikiriarachchi A, Evangelista M, Keizer DW, Fairlie WD Abstract Beclin 1 is a 450 amino acid protein that plays critical roles in the early stages of autophagosome...
nmrlearner Journal club 0 06-12-2016 03:35 PM
Erratum to: Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins
Erratum to: Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins Source: Journal of Biomolecular NMR
nmrlearner Journal club 0 03-06-2015 02:01 PM
Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins
Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins Abstract There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not...
nmrlearner Journal club 0 11-21-2014 09:04 PM
Local protein backbone folds determined by calculated NMR chemical shifts.
Local protein backbone folds determined by calculated NMR chemical shifts. Local protein backbone folds determined by calculated NMR chemical shifts. J Comput Chem. 2011 Sep 9; Authors: Czajlik A, Hudáky I, Perczel A Abstract NMR chemical shifts (CSs: ?N(NH) , ?C(?) , ?C(?) , ?C', ?H(NH) , and ?H(?) ) were computed for the amino acid backbone conformers (?(L) , ?(L) , ?(L) , ?(L) , ?(L) , ?(D) , ?(D) , ?(D) , and ?(D) ) modeled by oligoalanine structures. Topological differences of the extended fold were investigated on single ?-strands,...
nmrlearner Journal club 0 09-10-2011 06:51 PM
The calponin regulatory region is intrinsically unstructured: novel insight into actin-calponin and calmodulin-calponin interfaces using NMR spectroscopy.
The calponin regulatory region is intrinsically unstructured: novel insight into actin-calponin and calmodulin-calponin interfaces using NMR spectroscopy. The calponin regulatory region is intrinsically unstructured: novel insight into actin-calponin and calmodulin-calponin interfaces using NMR spectroscopy. Biophys J. 2011 Apr 6;100(7):1718-28 Authors: Pfuhl M, Al-Sarayreh S, El-Mezgueldi M Calponin is an actin- and calmodulin-binding protein believed to regulate the function of actin. Low-resolution studies based on proteolysis established that...
nmrlearner Journal club 0 04-06-2011 10:54 AM
[NMR paper] Internal mobility in the partially folded DNA binding and dimerization domains of GAL
Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions. Biochemistry. 1996 Feb 27;35(8):2674-86 Authors: Lefevre JF, Dayie KT, Peng JW, Wagner G The DNA binding domain (residues 1--65) of the yeast transcriptional...
nmrlearner Journal club 0 08-22-2010 02:27 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:16 PM.


Map