BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 09:51 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,780
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structure distribution in an elastin-mimetic peptide (VPGVG)3 investigated by solid-s

Structure distribution in an elastin-mimetic peptide (VPGVG)3 investigated by solid-state NMR.

Related Articles Structure distribution in an elastin-mimetic peptide (VPGVG)3 investigated by solid-state NMR.

J Am Chem Soc. 2004 Apr 7;126(13):4199-210

Authors: Yao XL, Hong M

Elastin is an extracellular-matrix protein that imparts elasticity to tissues. We have used solid-state NMR to determine a number of distances and torsion angles in an elastin-mimetic peptide, (VPGVG)3, to understand the structural basis of elasticity. C-H and C-N distances between the V6 carbonyl and the V9 amide segment were measured using 13C-15N and 13C-1H rotational-echo double-resonance experiments. The results indicate the coexistence of two types of intramolecular distances: a third of the molecules have short C-H and C-N distances of 3.3 +/- 0.2 and 4.3 +/- 0.2 A, respectively, while the rest have longer distances of about 7 A. Complementing the distance constraints, we measured the (phi, psi ) torsion angles of the central pentameric unit using dipolar correlation NMR. The -angles of P7 and G8 are predominantly ~150, thus restricting the majority of the peptide to be extended. Combining all torsion angles measured for the five residues, the G8 C chemical shift, and the V6-V9 distances, we obtained a bimodal structure distribution for the PG residues in VPGVG. The minor form is a compact structure with a V6-V9 C=O-HN hydrogen bond and can be either a type II -turn or a previously unidentified turn with Pro (phi = -70, psi= 20 +/- 20) and Gly ( phi= -100 +/- 20, psi = -20 +/- 20). The major form is an extended and distorted beta-strand without a V6-V9 hydrogen bond and differs from the ideal parallel and antiparallel beta-strands. The other three residues in the VPGVG unit mainly adopt antiparallel beta-sheet torsion angles. Since (VPGVG)3 has the same 13C and 15N isotropic and anisotropic chemical shifts as the elastin-mimetic protein (VPGXG)n (X = V and K, n = 195), the observed conformational distribution around Pro and Gly sheds light on the molecular mechanism of elastin elasticity.

PMID: 15053609 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Solid-State NMR characterization of autofluorescent fibrils formed by the elastin-derived peptide GVGVAGVG.
Solid-State NMR characterization of autofluorescent fibrils formed by the elastin-derived peptide GVGVAGVG. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Solid-State NMR characterization of autofluorescent fibrils formed by the elastin-derived peptide GVGVAGVG. Biomacromolecules. 2011 May 9;12(5):1546-55 Authors: Sharpe S, Simonetti K, Yau J, Walsh P Abstract The characterization of the molecular structure and physical properties of self-assembling peptides is an...
nmrlearner Journal club 0 09-10-2011 06:51 PM
Transferred NOESY NMR studies of biotin mimetic peptide (FSHPQNT) bound to streptavidin: A structural model for studies of peptide-protein interactions.
Transferred NOESY NMR studies of biotin mimetic peptide (FSHPQNT) bound to streptavidin: A structural model for studies of peptide-protein interactions. Transferred NOESY NMR studies of biotin mimetic peptide (FSHPQNT) bound to streptavidin: A structural model for studies of peptide-protein interactions. Chem Biol Drug Des. 2011 Feb 5; Authors: Gizachew D, Dratz E Protein-protein interactions control signaling, specific adhesion and many other biological functions. The three dimensional structures of the interfaces and bound ligand can be...
nmrlearner Journal club 0 02-08-2011 06:28 PM
Solid-state NMR evidence for elastin-like beta-turn structure in spider dragline silk.
Solid-state NMR evidence for elastin-like beta-turn structure in spider dragline silk. Solid-state NMR evidence for elastin-like beta-turn structure in spider dragline silk. Chem Commun (Camb). 2010 Sep 28;46(36):6714-6 Authors: Jenkins JE, Creager MS, Butler EB, Lewis RV, Yarger JL, Holland GP Two-dimensional homo- and heteronuclear solid-state MAS NMR experiments on (13)C/(15)N-proline labeled Argiope aurantia dragline silk provide evidence for an elastin-like beta-turn structure for the repetitive Gly-Pro-Gly-X-X motif prevalent in major...
nmrlearner Journal club 0 12-28-2010 03:31 PM
[NMR paper] Conformational analysis by NMR and distance geometry techniques of a peptide mimetic
Conformational analysis by NMR and distance geometry techniques of a peptide mimetic of the third helix of the Antennapedia homeodomain. Related Articles Conformational analysis by NMR and distance geometry techniques of a peptide mimetic of the third helix of the Antennapedia homeodomain. J Pept Res. 2005 Feb;65(2):200-8 Authors: Saviano M, Isernia C, Bassarello C, Di Lello P, Galdiero S, Mierke DF, Benedetti E, Pedone C The Antennapedia homeodomain structure consists of four helices. The helices II and III are connected by a tripeptide that...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Investigation of the dynamics of an elastin-mimetic polypeptide using solid-state NMR
Investigation of the dynamics of an elastin-mimetic polypeptide using solid-state NMR. Related Articles Investigation of the dynamics of an elastin-mimetic polypeptide using solid-state NMR. Magn Reson Chem. 2004 Feb;42(2):267-75 Authors: Yao XL, Conticello VP, Hong M Elastin is the main structural protein that provides elasticity to various tissues and organs in vertebrates. Molecular motions are believed to play a significant role in its elasticity. We have used solid-state NMR spectroscopy to characterize the dynamics of an elastin-mimetic...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Structure of an elastin-mimetic polypeptide by solid-state NMR chemical shift analysi
Structure of an elastin-mimetic polypeptide by solid-state NMR chemical shift analysis. Related Articles Structure of an elastin-mimetic polypeptide by solid-state NMR chemical shift analysis. Biopolymers. 2003 Oct;70(2):158-68 Authors: Hong M, Isailovic D, McMillan RA, Conticello VP The conformation of an elastin-mimetic recombinant protein, 39, is investigated using solid-state NMR spectroscopy. The protein is extensively labeled with 13C and 15N, and two-dimensional 13C-13C and 15N-13C correlation experiments were carried out to resolve and...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Measurement of conformational constraints in an elastin-mimetic protein by residue-pa
Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR. Related Articles Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR. J Biomol NMR. 2002 Feb;22(2):175-9 Authors: Hong M, McMillan RA, Conticello VP We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] NMR studies of the antibody-bound conformation of a carbohydrate-mimetic peptide.
NMR studies of the antibody-bound conformation of a carbohydrate-mimetic peptide. Related Articles NMR studies of the antibody-bound conformation of a carbohydrate-mimetic peptide. Biochemistry. 2002 Feb 19;41(7):2149-57 Authors: Johnson MA, Rotondo A, Pinto BM Transferred nuclear Overhauser enhancement (TRNOE) experiments have been performed at 800 MHz to investigate the bound conformation of the hexapeptide DRPVPY, a functional molecular mimic of the group A Streptococcus cell-wall polysaccharide. The hexapeptide binds to the monoclonal...
nmrlearner Journal club 0 11-24-2010 08:49 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:55 AM.


Map