Related ArticlesStructure of the dimerization interface in the mature HIV-1 capsid protein lattice from solid state NMR of tubular assemblies.
J Am Chem Soc. 2016 Jun 14;
Authors: Bayro MJ, Tycko R
Abstract
The HIV-1 capsid protein (CA) forms the capsid shell that encloses RNA within a mature HIV-1 virion. Previous studies by electron microscopy have shown that the capsid shell is primarily a triangular lattice of CA hexamers, with variable curvature that destroys the ideal symmetry of a planar lattice. The mature CA lattice depends on CA dimerization, which occurs through interactions between helix 9 segments of the C-terminal domain (CTD) of CA. Several high-resolution structures of the CTD-CTD dimerization interface have been reported, based on x-ray crystallography and multidimensional solution nuclear magnetic resonance (NMR), with significant differences in amino acid sidechain conformations and helix 9-helix 9 orientations. In a structural model for tubular CA assemblies based on cryogenic electron microscopy (cryoEM) [Zhao et al. (2013) Nature 497:643-646], the dimerization interface is substantially disordered. The dimerization interface structure in noncrystalline CA assemblies and the extent to which this interface is structurally ordered within a curved lattice have therefore been unclear. Here we describe solid state NMR measurements on the dimerization interface in tubular CA assemblies, which contain the curved triangular lattice of a mature virion, including quantitative measurements of intermolecular and intramolecular distances using dipolar recoupling techniques, solid state NMR chemical shifts, and long-range sidechain-sidechain contacts. When combined with restraints on the distance and orientation between helix 9 segments from the cryoEM study, the solid state NMR data lead to a unique high-resolution structure for the dimerization interface in the noncrystalline lattice of CA tubes. These results demonstrate that CA lattice curvature is not dependent on disorder or variability in the dimerization interface. This work also demonstrates the feasibility of local structure determination within large noncrystalline assemblies formed by high-molecular-weight proteins, using modern solid state NMR methods.
PMID: 27298207 [PubMed - as supplied by publisher]
[NMR paper] Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface.
Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface.
J Magn Reson. 2015 Apr;253:80-90
Authors: Abramov G, Morag O, Goldbourt A
Abstract
Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple...
nmrlearner
Journal club
0
03-24-2015 09:58 PM
[NMR paper] Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface
Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface
Publication date: April 2015
Source:Journal of Magnetic Resonance, Volume 253</br>
Author(s): Gili Abramov , Omry Morag , Amir Goldbourt</br>
Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis....
Magic AngleSpinning NMR Reveals Sequence-DependentStructural Plasticity, Dynamics, and the Spacer Peptide 1 Conformationin HIV-1 Capsid Protein Assemblies
Magic AngleSpinning NMR Reveals Sequence-DependentStructural Plasticity, Dynamics, and the Spacer Peptide 1 Conformationin HIV-1 Capsid Protein Assemblies
Yun Han, Guangjin Hou, Christopher L. Suiter, Jinwoo Ahn, In-Ja L. Byeon, Andrew S. Lipton, Sarah Burton, Ivan Hung, Peter L. Gor?kov, Zhehong Gan, William Brey, David Rice, Angela M. Gronenborn and Tatyana Polenova
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja406907h/aop/images/medium/ja-2013-06907h_0009.gif
Journal of the American Chemical Society
DOI: 10.1021/ja406907h...
nmrlearner
Journal club
0
11-13-2013 09:22 PM
[NMR paper] Shortening Spin-lattice Relaxation Using a Copper-Chelated lipid at Low-Temperatures – A Magic Angle Spinning Solid-State NMR Study on a Membrane-Bound Protein
Shortening Spin-lattice Relaxation Using a Copper-Chelated lipid at Low-Temperatures – A Magic Angle Spinning Solid-State NMR Study on a Membrane-Bound Protein
Publication date: Available online 1 November 2013
Source:Journal of Magnetic Resonance</br>
Author(s): Kazutoshi Yamamoto , Marc Caporini , Sangchoul Im , Lucy Waskell , Ayyalusamy Ramamoorthy</br>
Inherent low sensitivity of NMR spectroscopy has been a major disadvantage, especially to study biomolecules like membrane proteins. Recent studies have successfully demonstrated the advantages of performing...
nmrlearner
Journal club
0
11-01-2013 03:48 AM
[NMR paper] Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies.
Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies.
Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies.
J Am Chem Soc. 2013 Oct 28;
Authors: Han Y, Hou G, Suiter CL, Ahn J, Byeon IJ, Lipton AS, Burton SD, Hung I, Gor'kov PL, Gan Z, Brey WW, Rice D, Gronenborn AM, Polenova TE
Abstract
A key stage in HIV-1 maturation towards...
nmrlearner
Journal club
0
10-30-2013 10:44 AM
[NMR paper] NMR spectroscopy reveals the solution dimerization interface of p53 core domains boun
NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA.
Related Articles NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA.
J Biol Chem. 2001 Dec 28;276(52):49020-7
Authors: Klein C, Planker E, Diercks T, Kessler H, Künkele KP, Lang K, Hansen S, Schwaiger M
The p53 protein is a transcription factor that acts as the major tumor suppressor in mammals. The core DNA-binding domain is mutated in about 50% of all human tumors. The...