BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-11-2018, 11:50 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structure determination of protein-ligand complexes by NMR in solution.

Structure determination of protein-ligand complexes by NMR in solution.

Structure determination of protein-ligand complexes by NMR in solution.

Methods. 2018 Feb 07;:

Authors: Orts J, Gossert AD

Abstract
In this paper, we discuss methods for determining structures of protein-ligand complexes by NMR in solution. Our discussion is based on small ligands (< 2 kDa) as for example drugs, metabolites or oligo-peptides, but most of the considerations also apply to more general cases. In NMR in solution, the kinetics of association and dissociation of the complex - the exchange rate - determines the optimal sample preparation and the NMR experimental approach. Additionally, depending on the part of the complex that will be studied (only the bound ligand, the protein, the protein-ligand interface or the entire protein-ligand complex structure), different types of NMR experiments are needed. Therefore, the choice of a combination of the appropriate experiment and a suitable sample preparation in terms of ligand to protein ratios are discussed in detail. Also, considerations for practically preparing samples of protein-ligand complexes and carrying out experiments including trouble shooting are described. For structure determination, the scope of this paper is limited to NOE-based methods and some of the most recent approaches will be covered.


PMID: 29427713 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Fast NMR-Based Determination of the 3D Structure of the Binding Site of Protein-Ligand Complexes with Weak Affinity Binders.
Fast NMR-Based Determination of the 3D Structure of the Binding Site of Protein-Ligand Complexes with Weak Affinity Binders. Fast NMR-Based Determination of the 3D Structure of the Binding Site of Protein-Ligand Complexes with Weak Affinity Binders. Angew Chem Int Ed Engl. 2017 Apr 07;: Authors: Wälti MA, Riek R, Orts J Abstract In early drug discovery approaches, screening hits are often weak affinity binders that are difficult to characterize in structural detail, particularly towards obtaining the 3D structure of...
nmrlearner Journal club 0 04-08-2017 10:57 AM
[NMR paper] NMR solution structure determination of large RNA-protein complexes.
NMR solution structure determination of large RNA-protein complexes. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif NMR solution structure determination of large RNA-protein complexes. Prog Nucl Magn Reson Spectrosc. 2016 Nov;97:57-81 Authors: Yadav DK, Lukavsky PJ Abstract Structure determination of RNA-protein complexes is essential for our understanding of the multiple layers of RNA-mediated posttranscriptional regulation of gene expression. Over the...
nmrlearner Journal club 0 11-29-2016 12:57 AM
Determination of ligand binding modes in weak proteinâ??ligand complexes using sparse NMR data
Determination of ligand binding modes in weak proteinâ??ligand complexes using sparse NMR data Abstract We describe a general approach to determine the binding pose of small molecules in weakly bound proteinâ??ligand complexes by deriving distance constraints between the ligand and methyl groups from all methyl-containing residues of the protein. We demonstrate that using a single sample, which can be prepared without the use of expensive precursors, it is possible to generate high-resolution data rapidly and obtain the resonance assignments of...
nmrlearner Journal club 0 11-19-2016 08:35 PM
NMR solution structure determination of large RNA-protein complexes
NMR solution structure determination of large RNA-protein complexes Publication date: November 2016 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 97</br> Author(s): Deepak Kumar Yadav, Peter J. Lukavsky</br> Structure determination of RNA-protein complexes is essential for our understanding of the multiple layers of RNA-mediated posttranscriptional regulation of gene expression. Over the past 20years, NMR spectroscopy became a key tool for structural studies of RNA-protein interactions. Here, we review the progress being made in NMR structure...
nmrlearner Journal club 0 11-19-2016 08:35 PM
Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach.
Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach. Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach. Methods Enzymol. 2011;493:241-75 Authors: Ziarek JJ, Peterson FC, Lytle BL, Volkman BF Over the last 15years, the role of NMR spectroscopy in the lead identification and optimization stages of pharmaceutical drug discovery has steadily increased. NMR occupies a unique niche in the biophysical analysis of drug-like...
nmrlearner Journal club 0 03-05-2011 01:02 PM
Fast methionine-based solution structure determination of calcium-calmodulin complexes
Fast methionine-based solution structure determination of calcium-calmodulin complexes Abstract Here we present a novel NMR method for the structure determination of calcium-calmodulin (Ca2+-CaM)-peptide complexes from a limited set of experimental restraints. A comparison of solved CaM-peptide structures reveals invariability in CaMâ??s backbone conformation and a structural plasticity in CaMâ??s domain orientation enabled by a flexible linker. Knowing this, the collection and analysis of an extensive set of NOESY spectra is redundant. Although RDCs can define CaM domain orientation in...
nmrlearner Journal club 0 03-03-2011 02:06 AM
[NMR paper] Structure determination of protein/RNA complexes by NMR.
Structure determination of protein/RNA complexes by NMR. Related Articles Structure determination of protein/RNA complexes by NMR. Methods Enzymol. 2005;394:525-45 Authors: Wu H, Finger LD, Feigon J Structure determination of protein?RNA complexes in solution provides unique insights into factors that are involved in protein/RNA recognition. Here, we review the methodology used in our laboratory to overcome the challenges of protein?RNA structure determination by nuclear magnetic resonance (NMR). We use as two examples complexes recently...
nmrlearner Journal club 0 11-24-2010 11:14 PM
Structure Determination of Protein-Ligand Complexes by Transferred Paramagnetic Shifts
Structure Determination of Protein-Ligand Complexes by Transferred Paramagnetic Shifts Michael John, Guido Pintacuda, Ah Young Park, Nicholas E. Dixon, and Gottfried Otting J. Am. Chem. Soc.; 2006; 128(39) pp 12910 - 12916; (Article) Abstract: Rational drug design depends on the knowledge of the three-dimensional (3D) structure of complexes between proteins and lead compounds of low molecular weight. A novel nuclear magnetic resonance (NMR) spectroscopy strategy based on the paramagnetic effects from lanthanide ions allows the rapid determination of the 3D structure of a small...
administrator Protein-ligand interactions 1 03-30-2007 03:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:11 AM.


Map