BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-09-2013, 02:47 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,780
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structure Determination of Membrane Proteins in Their Native Phospholipid Bilayer Environment by Rotationally Aligned Solid-State NMR Spectroscopy.

Structure Determination of Membrane Proteins in Their Native Phospholipid Bilayer Environment by Rotationally Aligned Solid-State NMR Spectroscopy.

Structure Determination of Membrane Proteins in Their Native Phospholipid Bilayer Environment by Rotationally Aligned Solid-State NMR Spectroscopy.

Acc Chem Res. 2013 Jul 5;

Authors: Opella SJ

Abstract
One of the most important topics in experimental structural biology is determining the structures of membrane proteins. These structures represent one-third of all of the information expressed from a genome, distinguished by their locations within the phospholipid bilayer of cells, organelles, or enveloped viruses. Their highly hydrophobic nature and insolubility in aqueous media means that they require an amphipathic environment. They have unique functions in transport, catalysis, channel formation, and signaling. Researchers are particularly interested in G-protein coupled receptors (GPCRs) because they modulate many biological processes, and about half of the approximately 800 of these proteins within the human genome are or can be turned into drug receptors that affect a wide range of diseases. Because of experimental difficulties, researchers have studied membrane proteins using a wide variety of artificial media that mimic membranes, such as mixed organic solvents or detergents. More sophisticated mimics include bilayer discs (bicelles) and the lipid cubic phase (LCP), but both of these contain a very large detergent component, which can disrupt the stability and function of membrane proteins. To have confidence in the resulting structures and their biological functions and to avoid disrupting these delicate proteins, the structures of membrane proteins should be determined in their native environment of liquid crystalline phospholipid bilayers under physiological conditions. This Account describes a recently developed general method for determining the structures of unmodified membrane proteins in phospholipid bilayers by solid-state NMR spectroscopy. Because it relies on the natural, rapid rotational diffusion of these proteins about the bilayer normal, this method is referred to as rotationally aligned (RA) solid-state NMR. This technique elaborates on oriented sample (OS) solid-state NMR, its complementary predecessor. These methods exploit the power of solid-state NMR, which enables researchers to obtain well-resolved spectra from "immobile" membrane proteins in phospholipid bilayers, to separate and measure frequencies that reflect orientations with respect to the bilayer normal, and to make complementary distance measurements. The determination of the structures of several membrane proteins, most prominently the chemokine receptor CXCR1, a 350-residue GPCR, has demonstrated this approach.


PMID: 23829871 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Advanced Solid-State NMR Approaches for Structure Determination of Membrane Proteins and Amyloid Fibrils.
Advanced Solid-State NMR Approaches for Structure Determination of Membrane Proteins and Amyloid Fibrils. Advanced Solid-State NMR Approaches for Structure Determination of Membrane Proteins and Amyloid Fibrils. Acc Chem Res. 2013 May 10; Authors: Tang M, Comellas G, Rienstra CM Abstract Solid-state NMR (SSNMR) spectroscopy has become an important technique for studying the biophysics and structure biology of proteins. This technique is especially useful for insoluble membrane proteins and amyloid fibrils, which are essential for...
nmrlearner Journal club 0 05-11-2013 10:26 PM
[NMR paper] Solution NMR spectroscopy for the determination of structures of membrane proteins in a lipid environment.
Solution NMR spectroscopy for the determination of structures of membrane proteins in a lipid environment. Solution NMR spectroscopy for the determination of structures of membrane proteins in a lipid environment. Methods Mol Biol. 2013;974:389-413 Authors: Arora A Abstract Several recent advancements have transformed solution NMR spectroscopy into a competitive, elegant, and eminently viable technique for determining the solution structures of membrane proteins at the level of atomic resolution. Once a good level of cell-based or...
nmrlearner Journal club 0 02-14-2013 02:37 PM
Tertiary Structural Models for a Three Helix Membrane Protein in*a Bilayer Environment from Oriented Sample Solid State NMR Data
Tertiary Structural Models for a Three Helix Membrane Protein in*a Bilayer Environment from Oriented Sample Solid State NMR Data 29 January 2013 Publication year: 2013 Source:Biophysical Journal, Volume 104, Issue 2, Supplement 1</br> </br> </br> </br></br>
nmrlearner Journal club 0 02-03-2013 10:13 AM
Improved 1H amide resonance line narrowing in oriented sample solid-state NMR of membrane proteins in phospholipid bilayers
Improved 1H amide resonance line narrowing in oriented sample solid-state NMR of membrane proteins in phospholipid bilayers July 2012 Publication year: 2012 Source:Journal of Magnetic Resonance, Volume 220</br> </br> We demonstrate 1H amide resonance line widths
nmrlearner Journal club 0 02-03-2013 10:13 AM
[NMR paper] Structure determination of aligned samples of membrane proteins by NMR spectroscopy.
Structure determination of aligned samples of membrane proteins by NMR spectroscopy. Related Articles Structure determination of aligned samples of membrane proteins by NMR spectroscopy. Magn Reson Chem. 2004 Feb;42(2):162-71 Authors: Nevzorov AA, Mesleh MF, Opella SJ The paper briefly reviews the process of determining the structures of membrane proteins by NMR spectroscopy of aligned samples, describes the integration of recent developments in the interpretation of spectra of aligned proteins and illustrates the application of these methods...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Hydration-optimized oriented phospholipid bilayer samples for solid-state NMR structu
Hydration-optimized oriented phospholipid bilayer samples for solid-state NMR structural studies of membrane proteins. Related Articles Hydration-optimized oriented phospholipid bilayer samples for solid-state NMR structural studies of membrane proteins. J Magn Reson. 2003 Mar;161(1):64-9 Authors: Marassi FM, Crowell KJ The preparation of oriented, hydration-optimized lipid bilayer samples, for NMR structure determination of membrane proteins, is described. The samples consist of planar phospholipid bilayers, containing membrane proteins, that...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lantha
Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lanthanides for membrane protein studies. Related Articles Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lanthanides for membrane protein studies. Biochem Cell Biol. 1998;76(2-3):443-51 Authors: Prosser RS, Volkov VB, Shiyanovskaya IV The addition of lanthanides (Tm3+, Yb3+, Er3+, or Eu3+) to a solution of long-chain phospholipids such as dimyristoylphosphatidylcholine (DMPC) and short-chain phospholipids such as...
nmrlearner Journal club 0 11-17-2010 11:06 PM
Mechanically, Magnetically, and "Rotationally Aligned" Membrane Proteins in Phospholi
Mechanically, Magnetically, and "Rotationally Aligned" Membrane Proteins in Phospholipid Bilayers Give Equivalent Angular Constraints for NMR Structure Determination. Related Articles Mechanically, Magnetically, and "Rotationally Aligned" Membrane Proteins in Phospholipid Bilayers Give Equivalent Angular Constraints for NMR Structure Determination. J Phys Chem B. 2010 Oct 20; Authors: Park SH, Das BB, De Angelis AA, Scrima M, Opella SJ The native environment for membrane proteins is the highly asymmetric phospholipid bilayer, and this has a large...
nmrlearner Journal club 0 10-22-2010 04:33 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:31 PM.


Map